Maths at Peters Hill

RESEARCH

Summary of Ofsted research review

Curriculum Content:

Declarative knowledge is static in nature and consists of facts, formulae, concepts, principles and rules.

- All content in this category can be prefaced with the sentence stem 'I know that'.

Procedural knowledge is recalled as a sequence of steps. The category includes methods, algorithms and procedures: everything from long division, ways of setting out calculations in workbooks to the familiar step-by-step approaches to solving quadratic equations.

- All content in this category can be prefaced by the sentence stem 'I know how'.

Conditional knowledge gives pupils the ability to reason and solve problems. Useful combinations of declarative and procedural knowledge are transformed into strategies when pupils learn to match the problem types that they can be used for.

- All content in this category can be prefaced by the sentence stem 'I know when'.

When pupils learn and use declarative, procedural and conditional knowledge, their knowledge of relationships between concepts develops over time. This knowledge is classified within the 'type 2' sub-category of content.

Category	Type 1	Type 2
Declarative I know that'	Facts and formulae	Relationship between facts (conceptual understanding)
Procedural II know how'	Methods	Relationship between facts, procedures and missing facts (principles/mechanis ms)
Conditional	Strategies	Relationship between information, strategies and missing information (reasoning)

Our Process

The Process at Peters Hill
 Our 12 step approach

At Peters Hill, our Maths Curriculum strives towards the following aims:

- To ensure that topics are broken down into manageable steps that build on a sequence of learning where mathematical concepts are connected and extended.
- To develop a depth of understanding across a range of concepts, continually challenging learning and enriching their experiences by making links across the curriculum,
- To adopt a mastery approach, spending time on topics in order to embed understanding and develop connections across them.
- A focus on the ability to calculate both mentally and in written form and to continue revisiting and consolidating these skills in order to commit them to long term memory.
- The curriculum will have regular repetition so a significant amount of lesson content is drawn from previously linked learning and then referred to when a new idea is introduced.
- Teaching will ensure that pupils will have the necessary appropriate knowledge of facts, concepts and procedures required to solve associated mathematical problems and reasoning activities of a more complex nature as well as linking with real-life situations.
- Gaps in learning will be identified and addressed quickly when they prevent a pupil from tackling more complex mathematical concepts.
- Children will explore maths and present their findings not only in a written form but also visually; to that end teachers will adopt the CPA approach: concrete, pictorial, abstract to broaden their knowledge and understanding.
- Children will have an extensive knowledge of subject vocabulary and will have confidence to use this in order to communicate and justify their ideas to enrich their learning.

We believe that in Maths, all children should experience the following 5 big ideas:

- Follow the central component of the NCETM programme to develop the teaching of Mastery based around Five Big Ideas, drawn from research evidence, underpinning the teaching for mastery.
- 1. Coherence
lessons are broken down into small connected steps that gradually unfold the concept, providing access for all children and leading to a generalisation of the concept and the ability to apply the concept to a broad range of contexts.
- 2. Representation and Structure

Representations used in lessons expose the mathematical structure being taught, the aim being that students can do the maths without recourse to the representation

- 3. Mathematical Thinking

If taught ideas are to enrich learning and be understood deeply, they must not merely be passively received but must be worked on by the student,: thought about, reasoned with and discussed with others

- 4. Fluency

Quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics

- 5. Variation

Variation is twofold. It is firstly about how the teacher represents the concept being taught, often in more than one way, to draw attention to critical aspects, and to develop deep and holistic understanding. It is also about the sequencing of the episodes, activities and exercises used within a lesson and follow up practice, paying attention to what is kept the same and what changes, to connect and challenge the mathematics, drawing attention to mathematical relationships and structure.

Curriculum Drivers- How do our school values link to the subject?

- AMBITION (Success) - - The Maths curriculum at Peters Hill aims to promote high standards of Numeracy by equipping children with a broad range of vital skills which can be applied not only within school but used in everydaylife. The desired outcome is to instill a deep and lasting interest in mathematics to last a lifetime.
- BELIEF (Confidence)- • It is important to encourage children to develop and nurture a range of strategies to help them solve problems, make links with other subjects and grow in confidence in the understanding of numbers. Children are given praise, primarily for effort irrespective of getting the answer correct, they are listened to and their interpretations and'methods acknowledged, and contributions valued.
- COMPASSION (Motivation) - - Peters Hill promotes a positive, enthusiastic and resilient attitude towards maths Students are taught that everyone can become good at maths if they work hard and challenge themselves to constantly learn more. Emphasis is given to developing mathematical thinking and going through the process of solving the problem rather than the goal being focused on simply getting the right answer.
- PRIDE (Knowledge)- • Because pupils will be well-practiced in using a wide range of written and mental methods, these skills will be committed to their long term memory and therefore pupils will have faith in their mathematical abilities • Pupils will have pride in having a sound understanding of calculation, number, shape, space and measures, and handling and interpreting data
- RESPECT (Responsibility) - - Children will be encouraged to take responsibility for setting personal goals so they feel accountable for their own learning. - Pupils will be encouraged to approach problems using different strategies and celebrate the fact that individuals can approach the problem in unique ways, reiterating how maths is dynamic and allows for different ways of thinking, cultivating an air of mutual respect.

Key Competencies

- The following documents set out the key competencies developed across the range of topics in each year group.
- These key competencies are set out as pathways to demonstrate how they link and progress throughout the school.
- These competencies are then planned into each topic through the half termly medium term planning process.
- These competencies combine to make the total schema that teaching staff use to assess the children at the end of the topic. This generates assessment judgements as set out on the following slide and happens three times a year.
- These total judgements average throughout the term. This total will fall between 1 to 5 depending on the outcome of each topic.

Novice	Simple idea	Relational idea	Multiple Links	Expert understanding
1	2	3	4	5
The task is not attacked appropriately; the pupil hasn't really understood the point and uses too simple a way of going about it.	The pupil's response only focuses on one relevant aspect.	The pupil's response focuses on several relevant aspects but they are treated independently and additively. Assessment of this level is primarily quantitative.	The different aspects have become integrated into a coherent whole. This level is what is normally meant by an adequate understanding of some topic.	The previous integrated whole may be conceptualised at a higher level of abstraction and generalised to a new topic or area.
Well below Hes significent difficulties in succersfully accessing the competenies	Below- Can access key competencies of the schema but need signilicant support to do so.	Emerging - Started to unlock key competencies of the schema but not yet secure. Support can be required.	Secure - Securely unlocked the key competencies of the scheme. No support is required.	Mastered - Can apply the competencies of the schema with fluency in different contexts.

Key Competency Expectations

Well Below

Working well below the standard. Has significant difficulties in accessing the key competencies.

Below

Working below the standard. Can access key competencies of the schema but needs support to do so.

Emerging

Emerging towards the standard. Started to unlock key competencies of the schema but not yet secure. Support can be required.

Secure

Meeting the standard. Securely unlocked the key competencies of the schema. No support is required.

```
High attaining within the standard. Can apply the competencies of the schema with fluency in different contexts.
```


The Pathways

Children become proficient mathematicians through the development of learning across key pathways. These are;

- Pathway 1 - Number: Place Value

Pathway 2 -Number: Addition and Subtraction
Pathway 3 - Multiplication and Division
Pathway 4 - Number: Fractions
Pathway 5 - Measurement: Length and Height, Weight and
Volume, Money
Pathway 6 - Time
Pathway 7 -Geometry: Shape, Position and Direction
Pathway 8 -Statistics
Pathway 9 -Decimals and Percentages
Pathway10-Ratio and Proportion
Pathway 11 -Algebra
*Green highlights indicate ready-to-progress criteria

Pathway 1	Year 1	Year

Number: Place Value Counting		- Count in steps of 2,3 and 5 from 0 , and in tens from any number, forward and backward	- Count from 0 in multiples of 4,8 , Soand 100 - Find 10 or 100 mere or less than a five tumber. fuesicos abous the bcaten of ony divere dige number and neat mutiplete of 100 and 10. See RTCO SnNV:S	* Count in multiples of $6,7,9$. 25 and 1000 - Count Backwards through sero to ificlude negative fumbers	- Count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
Represent	- isensfly and reprosemn numbers using ebjects and pictoria repressentations incluang the fumber guage of: equal to, more than, less than, mast, lean - haad and write numbers from 1 to 20 in foumerak and word	- Read and write numbers to at least 100 in numerals and in words - Identify, represent and estimate numbers using different representations including the number line	* Identify, represemt and estimate numbers using different Aepresemtations - Mead and write numbers up so 1000 in numberak and in word	- identify, reprosent and estimate numbers using different repeesentations - haed homan numerals to 100 (I to C) and know that over time the numeral ypstem changed to include the coneept of aero and place velue	- Read, write, order ind compare numbers to at least 1000000 and determine the vabee of exech difi - fead hommen tumeral to 1000 (M) and secogisise vears wititen in fomen fumerak - ainse 1 into 2, 4, 5 ond 10 coural parti, and crod comies/number ines mariond in oniss of 1 mimim 2.4 5 and 10 equas pars. ISee RTDC svov-4]	- Read, write, order and compare numbers up to $10,000,000$ and determine the value of each digit. Recognise the ploce value of each digit in numbers up to 10 mallon, including decimal fractians, and compose and decompose numbers up to 10 mallon using standord ond nanstandard partitioning (See RTPC SNPV:2]
Use PV and Compare	- Given a number, identity ene more and one bw	- Recognise the place value of each digit in a two digit number (tens, ones) and com: pase and decompase two digit numbers using standerd and nonstandord partl) tioning. (See RTPC 2NPV-1) - Compare and order numbers from 0 up to 100 ; use $<,>$ and $=$ signs	- Kiow that 10 tens are davivalest mo 2 huodrod, and that 200 s 10 imes the site of 10 eqpoly this to dennfy end wark eut haw mavy ras there ove it acher stowe digis nuitipies of 10 (See RTPC SNPV-1) - Recognise the place vilue of each digit in a three-digit number (hun dreds, Nent, anek) and compose and decompose three-dyit numDers using sfandord and noeitandond partieiawing. (See RTpC 3NPV-2) * Compare and order numbers up to 1000	- Find 2000 more or less than a own number. (See ATRC enPV-S) \qquad sech dipit in a four divit num bar (thousxiendsk tundrods, tens and onest and campoie and decompose four stigit cumbers using tansord ond mastandard portioning! (See RTPC AnPV.2] - Order and compare fumbers berond 1000 meason abeut the focation of aey four digit cumber io me liveor number yosem. (See RTPC ANPV.3]	- koow that 10 uentins are equiatest to 1 ane, and fitar 1 ab ro times the size of 0.1 Koww tort reo himarenthis are equivieno to Fane, and thot 16100 bimes ithe whe of oas. Keon that 10 hundreaths are covinuber to 1 entr, and that 0.1 b 10 cimes the sive of oor (See RtpC SNPV-1) - Aecogogise the p pose velve of cooch dipit io numbers with up as 2 \qquad decima places, and campose and decintol places using sendard and nonstemdord partieliosing. (See TTPC $5 \mathrm{MPW}-2$] ATPC SNPV-2)	Unserstand the rextriassinp tutwom comers of 20 from 1 hundevalin to 10 milion, and asse ins to mate a given crumber $20,100,1,00 \mathrm{~A} 1$ mat, 1 turdreste or 1 thowinantht times ine siae (multioty and divide by 10,100 and 1,COC5. . (See RTPC GNPV-1) Divide powers of 20, fram 1 hurdredth to 20 milient, into 2,4,5 and 10 equal parts, ond read reateshamber fres with interfed interval divided into 2, 4, 5 and 10 ceval parts See RTPC GNPV-4
Problems and Rounding	Qegsoe atout the lo cotion of numbers to 0 within the inear umber spstem, ibfuding camparing usng < > and $=$ See RTPC 1NPV-2)	Lise placd walue and problems - Remian atove the lice. hien of ony the digit farmber in the incue cumber sprams incus ing ismanijping the prestous and next muthiple of 10. (See atcic 2nNo-2)	* Solve furmber problems and practical problems ifwolving thene ideas - Divde 100 into 2, 4, 5 avid 10 equal perts, and retad sesfes/foumBer Jines merked in mwhiples of r00 mint 2, 4, 5 and 10 equal	- mound any number to the nearest 10,100 or 1000 . (Seed RTPC ANPV-3) - Solve number and practical problems than involve al of the abowe and with increasingy liege positive numbers	- Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers including through zero	- Round any whole number to arequired degree of accuracy. fieason atout the locotion of any number up to 10 milition, including decimal fractions, in the înear number system, and round numbers, as appropriate

*Green highlights indicate ready-to-progress criteria

Number:
Place Value

Problems
and
Rounding

- Whow rist io hundratic ame

 1FF and work oul hùw masy joks blere are it acherfourdisit Mollifis of joce fert日TPL ANPV-1!
- Duvale 1,000 inde 24,500 10 multerti and 5
 coleshambir Ins morkw
 RTPL ANPV-4
* Round any number up to 1000000 to the nearest 10 $100,1000,10000$ and 100000
- Solve number problema and practical problems that Involve all of the abowe

Wheluring in cantents. Fiee FTPC GMPV:3)

* Use negative numbersin context, and calculate intervals acrosszero
- Solve number and practical problems that involve al of the abovel

*Green highlights indicate ready-to-progress criteria

- Solme arobliems ivuodivieq addition. alatraction.
multipication and division Use estimation to check answers to
calculations and determine in the conteat of a peoblem, an aperopriat degree of acouracy
-

Understond mot 2 numbers can be recten adativeiv ar mutipico multipicative relationships. mutiplicotive cellationships (estricted to multipicication by d
wnole number) See ATPC $6 A 5 / M D$.
-
Use a given odative ar multipicative. calculation to derive or comperted a pebrofed catowation, using ancthmetic propernes, imense reionionstipse and RTPC GAS/M0.2]

- Solve addition and subtraction multi steps problems in contexts, deciding which operations and methods to use and why sion facts for the
2,5 , and 10 times tables, including and even num-bers.-Recognise re-bers.-Recognise repeated addilition contexts, representing them with multiplication -quations and call culating the prodand 10 multipotication tables. (see tion tables. (Se
RTPC 2MD-1]
- Show that the mul tiplication of two tiplication of two
numbers can be done in any order (commutative) and division of one number by another cannot
- Recall and use multipicaction and division facts for the 3, 4 and 8 multiplication tables. ecall mainplcoun jacts, and corresponding division multiplication tables, and mecognise praductss, in these multiplication tables as multiples of the corresponding number. (See RTPC 3NF-2)

Calculate mathematical statements for multiplication for multiplication and division within tables and write tables and write
them using the multiplication (x), division (t) and equals (=) signs
mathematical statements for multiplication and division using the multiplication tables they numbers times one-digit umbers, using mental and numbers, using mental and progressing to formal written methods
 Find foctors ond muntiples of positive whaie numbers, acluding common foctors an exaress a given number as aroduct of 2 ar 3 factors (See RTPC SMD-2

- Know and use the vocabulary of prime numbers, prime prime) numbers
Establish whether a number up to 100 is prime and recal prime numbers up to 19
Recognise and use square and the notation for squared (2) and cubed (3)

Multiply two digit and three digit mumberin using tormal wirten layout
Appy plicacrabe knowledge. aicotive number focts scot ing focts by 100)
-
Mutiply and divide whoie humbers by 10 ond 100 quotientski, understond ithis os equivabent to making of shae (See RTPC 4MO-1)

Mutiply and divide numbers mentally drawing upon known facts, Secure fivency in multiplication table facts, and through continued practice through continued practice.
-
Multiply numbers up to 4 digits by a one or tho digit number using a formal written methad, including long multiplication for 2 digit
numbers/See RTPC SMD-3) Dinide numbers up to 4 digite hy a one digit number using the format withen methad of short division and internret remainders appropriately for the context See RTPC SMD.4)
entify common factors menny co tiples and ommon multeples and prim numbers
Use estimation to check answers to calculations and problem, an appropriate degre of accuracy

Multiply multi-digit number up to 4 digits by a 2 -digit number using the formal written method of long multipication - Divide numbers up to 4 digits by a 2 -digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the ontext
Divide numbers up to 4 digits b 2 -digit number using the hod of short division, interpreting ders according to the context

Pathway 4	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Number: Fractions Recognise and Write	- Recognise, find and name a half as one of two equal parts of an object, shape or quantity - Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	- Recognise, find, name and write fractions $1 / 3, \mathrm{X}, 2 / 4$ and $\%$ of a length, shape, set of objects or quantity	* Count up and down in tenths; recognise that tenths arke from oividing an object into 10 equal parts and in divising one-digit numbers of quantities by 10 - Secognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators - Recognike and use fractions as numbers: unit fractions and nonunit fractions with smal denominatoes - mterperet and write proper fractions to repersent 1 or several ports of o whale that is dividiod into equal parts. (See RTPC 3F-1)	- Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	- Isentiry, name and write equivalent fractions of a given fraction, represented vosually includien tenths and hundredters ond understand that they hove the some volue and the same position in the finear number system. (Seef RTPC SF-2) - Secognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements $>1 \times 2$ mixed number Hor example. $2 / 5$ *4/5 = 6/5 - 11/5] - Sead and wirte decimal numbers as fractions [for example $0.71=$ 71/100)	
Compare		- Recognise the equivalence of $2 / 4$ and $1 / 2$	- Recognise and show, using diagrams, equivalent fractions with small denominators - Compare and order unit fractions, and fractions with the same denominators	- Recognise and show, using diagrams, families of common equivalent fractions	- Compare and order fractions whose denominators are multiples of the same number	- Use common foctors to simalify frac. trians; use comman multiples to erpress froctions in the same denamination. (See RTPC 6F-1) - Compare and onder fractions, including fractions >1 Eupress froctions in - comman demomination and use this to compare froctions thot are similor ion vater. (See RTPC 6F-2) Compare froctions with different dee nominatars, including fractians groster than 1 , using rewsoning, and choose benween reasoning and com. mon denamination as a comparson tiratrogy/See RTAC 6F-3] - Generate and describe linear number sequences (with fractions)
Calculations		- Write simple fractions for example, $1 / 2$ of $6=3$	- Add and subtract fractions with the some denominator within one whale (for example, $5 / 7+1 / 7=6 / 7)($ See RTPC $3 F$. 4)	- Add and subtract fractians with the same denominatar, including improper and mixed fractians and bridging whale numbers. (See RTPC 4F-3) - Convert mixed numbers to improper fractions and	- Add and subtract fractions with the same denominator and denominators that are multiples of the same number - Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams - Find nan-unit fractions of quantities. (See RTPC 5F-1)	- Add and subtract fractions with different denominations and mired numbers, using the concept of equivalont fractions - Multiply simple pairs of proper fractions, writing the anower in its simplest form \|for example $\mathrm{K} \times \mathrm{K}=1 / \mathrm{s}$] - Divide proper fractions by whole numbers [for example $1 / 3 \div 2=1 / 6$]

Pathway 6	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Time	- Sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening - Recognise and use language relating to dates, including days of the week, weeks, months and years - Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times - Compare, describe and solve practical problems for time [for example, quicker, slower, earlier, later] - Measure and begin to record time (hours, minutes, seconds)	- Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times - Know the number of minutes in an hour and the number of hours in a day - Compare and sequence intervals of time	- Tell and write the time from an analogue clock, including using Roman numerals from I to XII and 12 -hour and 24-hour clocks - Estimate and read time with increasing accuracy to the nearest minute - Record and compare time in terms of seconds, minutes and hours - Use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight - Know the number of seconds in a minute and the number of days in each month, year and leap year - Compare durations of events [for example to calculate the time taken by particular events or tasks]	- Convert between different units of measure [for example, kilometre to metre; hour to minutel - Read, write and convert time between analogue and digital 12 and 24 hour clocks. - Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	- Solve problems involving converting between units of time	Use, read, write and convert between standard units, converting measurements of time from a a smaller unit of measure to a larger unit, and vice versa

*Green highlights indicate ready-to-progress criteria

*Green highlights indicate ready-to-progress criteria

Percentages

Recognise the per cent
symbol (k) and symbol ($\%$) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal

- Solve problems which require knowing percentage and decimal equivalents of $\%, X, 1 / 5$, $2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .

Solve problems involving the calculation of percentages ffor
example, of measures and such as 15% of 350 Ind the use of percentages for comparison
forcall and use equivalences between simple fractions, decimals and percentages including in different conterts
*Green highlights indicate ready-to-progress criteria

Pathway 10		Year 1	
Ratio and			•

*Green highlights indicate ready-to-progress criteric

Pathway 11	Year 1	Year 2	Year 3	Year 4	Year 5
Algebra "NOT: Although algebrale notation is not introdiceed watilyof algebrale thinking startsmuch carlieras exemplified by the missing number objectives from Ya/2/3	- Solve one-step problems that involve addition and subtraction using concrete objects and pictorial representations, and missing numbers problems such as 7 = ? -9	- Recognise and use the inverse relationship between addition and subtraction and use to check calculations and sole missing number problems	- Solve problems including missing number problems	-	-

- Use simple formulae
- Generate and describe linear number sequences

Express missing number problems algebraically

- Find pairs of numbers that satisfy an equation with two unknowns. Solve problems with 2 unknowns. (See RTPC 6AS/MD-4)
- Enumerate possibilities of combinations of two varia bles

IMPLEMENTATION

Topic
 Overview

Green Highlight $=$ Ready to Progress Strands
Year 1 Autumn Number: Place Value (within 10)
Number: Addition and Subtraction $\stackrel{\text { (within } 10)}{\text { Number: Facts }}$
Number: Facts
Geometry: Shape

Geometry: Properties of Shape
Year 3 Autumn
Number: Place Value
Number: Place Value
Number: Addition and Subtraction
Number: Multiplication and Division
Number: Multiplication and Division

Number: Place Valu
Number: Addition and Subtraction Measurement: Area
Number: Multiplication and Division

Year 6 Autumn
Number: Place Value Number:Addition, Subtraction
Multiplication and Division

Number: Facts
Number: Fractions

Year 1 Spring
Number: Place Value (W Number. Place Value (within 20) Number: Addition and Subtraction
(within 20)
(within 20) Measurement: Length and Height Measurement: Length and Heigh
Measurement: Mass and Volume

Year 2 Spring
Measurement: Money
Number: Multiplication and Division
Measurement: Length and Height
Measurement: Mass, Capacity and
Temperature
Year 3 Spring
Number: Multiplication and Division Measurement: Length and

Perimeter
Number. Fractions
Measurement: Mass and Capacity
Year 4 Spring
Number: Multiplication and Division Measurement: Length and

Perimeter
Number Fractio Number: Fractions
Number: Decimals

Number: Multiplication
Number Fractions Division
Number: Decimals and Percentages
Measurement: Perimeter and Area Statistics
Year 6 Spring
Number: Ratio
Number: Algebra
Number: Decimals
Number: Fractions, Decimals,
Percentages
Measurement: Perimeter, Area and
Volume
Stict
Statistics

Year 1 Summer
Number: Multiplication and Division Number: Fractions Geometry: Position and Direction umber: Place Value (within 100 Measurement: Money

Year 2 Summer
Number: Fractions Mumber.-Fractions Statistics
Geometry: Position and Direction
Consolidation
Year 3 Summer Number: Fractions Measurement: Money
Measurement: Time Geometry: Properties of Shape Statistics

Year 4 Summer Measurement: Money Measurement: Time Geometry: Properties of Shape Statistics
Geometry: Position and Direction
Year 5 Summer
Geometry: Proverties of Shape
Geometry: Properties of Shape
eometry: Position and Direct
Number Decimals
Number: Negative numbers
Measurement: Converting Units Measurement: Volume
Year 6 Summer
Geometry: Properties of Shape Geometry: Properties of Shape
try: Position and D
Investigations

Maths in the EYFS

- The EYFS framework is structured very differently to the national curriculum as it is organised across seven areas of learning rather than subject areas. The aim of this document is to help subject leaders to understand how the skills taught across EYFS feed into national curriculum subjects.
- This document demonstrates which statements from the 2020 Development Matters are prerequisite skills for mathematics within the national curriculum. The table below outlines the most relevant statements taken from the Early Learning Goals in the EYFS statutory framework and the Development Matters age ranges for Three and Four-Year-Olds and Reception to match the programme of study for mathematics.
- The most relevant statements for mathematics are taken from the following areas of learning:
- Communication and Language
- Mathematics

Three and Four-Year- Olds	Communication and Language	Use a wider range of vocabulary. Understand 'why' questions, like: "why do you think the caterpillar is so fat?"		
Reception	Communication and Language	Learn new vocabulary. Use new vocabulary throughout the day.		
ELG	Communication and Language	Speaking		Participate in small group, class and one-to-one
:---				
discussions, offering their own ideas, using				
recently introduced vocabulary.				

Number and Place Value

Counting

Three and Four-Year-Olds	Mathematics		Recite numbers past 5. Say one number name for each item in order: 1, 2, 3, 4, 5. Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle').
Reception	Mathematics		Count objects, actions and sounds. Count beyond ten.
ELG	Mathematics	Numerical Patterns	Verbally count beyond 20, recognising the pattern of the counting system.
Identifying, Representing and Estimating Numbers			
Three and Four-Year-Olds	Mathematics		Develop fast recognition of up to 3 objects, without having to count them individually ('subitising'). Show 'finger numbers' up to 5. Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . Experiment with their own symbols and marks as well as numerals.
Reception	Mathematics		Subitise. Link the number symbol (numeral) with its cardinal number value.
ELG	Mathematics	Number	Subitise (recognising quantities without counting) up to 5.

Reading and Writing Numbers

Three and Four-Year-Olds	Mathematics		Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5. Experiment with their own symbols and marks as well as numerals.
Reception	Mathematics		link the number symbol (numeral) with its cardinal number value.
Compare and Order Numbers			
Three and Four-Year-Olds	Mathematics		Compare quantities using language: 'more than', 'fewer than'.
Reception	Mathematics		Compare numbers.
ELG	Mathematics	Numerical Patterns	Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
Understanding Place Value			
Reception	Mathematics		Understand the 'one more than/one less than' relationship between consecutive numbers. Explore the composition of numbers to 10.
ELG	Mathematics	Number	Have a deep understanding of numbers to 10, including the composition of each number.
Solve Problems			
Three and Four-Year-Olds	Mathematics		Solve real world mathematical problems with numbers up to 5.

Addition and Subtraction

Mental Calculations			
Reception	Mathematics		Automatically recall number bonds for numbers 0-5 and some to 10.
ELG	Mathematics	Number	Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.
Solve Problems			
ELG	Mathematics	Numerical Patterns	Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed evenly.

Measurement
Describe, Measure, Compare and Solve (All Strands)
Three and Mathematics Four-Year- Olds
Make comparisons between objects relating to size, length, weight and capacity.
Telling the Time
Three and Mathematics Four-Year- Olds
Compare length, weight and capacity.
Statistics
Record, Present and Interpret Data
Three and Four-Year- Olds

Properties of Shapes
Recognise 2D and 3D Shapes and their Properties

Three and	
Four-Year-	Mathematics
Olds	Talk about and explore 2D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: 'sides', 'corners', 'straight', 'flat', 'round'.
Select shapes appropriately: flat surfaces for a	
building, a triangular pattern for a roof, etc.	
Combine shapes to make new ones - an arch, a	
bigger triangle, etc.	

Position and Direction

Position, Direction and Movement

Three and Four-YearOlds	Mathematics	Understand position through words alone - for example, "The bag is under the table," - with no pointing. Describe a familiar route. Discuss routes and locations, using words like 'in front of' and 'behind'.
Reception	Understanding the World	Draw information from a simple map.
Patterns		
Three and Four-YearOlds	Mathematics	Talk about and identify the patterns around them. For example, stripes on clothes, designs on rugs and wallpaper. Use informal language like 'pointy', 'spotty', 'blobs', etc. Extend and create ABAB patterns - stick, leaf, stick, leaf. Notice and correct an error in a repeating pattern.
Reception	Mathematics	Continue, copy and create repeating patterns.

Reception

Yearly overview

The yearly overview provides suggested timings for each block of learning, which can be adapted to suit different term dates or other requirements.

	Week 1 Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week9	Week 10	Week 11	Week 12
$\begin{aligned} & \text { 旨 } \\ & \frac{1}{3} \end{aligned}$	Getting to know you	Match, sort and compare		Talk about measure and patterns		$\begin{aligned} & \text { It's me } \\ & 1,2,3 \end{aligned}$			1, 2, 3, 4, 5		
	Alive in 5		Growing$6,7,8$		Length, height and time		Building 9 and 10			Explore 3-D shapes	
	To 20 and beyond		Manipulate, compose and decompose		Sharing and grouping		Visualise, build and map				

Key Language for Teachers

Cardinal - The number that indicates how many there are in a set.

Classification - The identification of an object by specific attributes, such as colour, texture, shape or size.

Conservation (of number) - The recognition that the number stays the same if none have been added or taken away.

Numeral - The written symbol for a number; e.g. 3, 2, 1

Ordinal - A number denoting the position in a sequence e.g. $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, etc or page 1 , page 2 , page 3 ...

Partition - Separate a set into two or more subsets e.g. Partition a set of socks into plain and patterned.

Subitise - Instantly recognise a small quantity,
without having to count how many there are.

Number - Number can be:

- a count of a collection of items e.g. three boxes,
- a measure e.g. of length or weight, or
- a label e.g. the number 17 bus

Quantity - The amount you have of something e.g. a cup of flour, three boxes, half an hour.

Reception - Notes and Guidance

The Counting Principles

Following research from Gelman and Gallistel in 1978, it is vital that teachers understand the five counting principles. (Gelman, R. \& Gallistel, C. (1978) The Child's Understanding of Number. Cambridge, MA. Harvard University Press.)

Children will sometimes count objects more than once or miss an object out that needs to be counted. Encourage children to line up objects and touch each one as they count saying one number name per object. This will also help to avoid children counting more quickly than they touch the objects which again shows they have not grasped one-one correspondence.

2

3

4

5

Reception - Notes and Guidance

The Counting Principles

The stable-order principle. Children understand when counting, the numbers have to be said in a certain order.

Children need to know all the number names for the amount in the group they are counting. Teachers can therefore encourage children to count aloud to larger numbers without expecting them to count that number of objects immediately.

The cardinal principle. Children understand that the number name assigned to the final object in a group is the total number of objects in that group.

In order to grasp this principle, children need to understand the one-one and stable-order principle. From a larger group, children select a given number and count them out. When asked 'how many?', children should be able to recall the final number they said. Children who have not grasped this principle will recount the whole group again.

The Counting Principles

The abstraction principle. This involves children understanding that anything can be counted including things that cannot be touched including sounds and movements e.g. jumps.

When starting to count, many children rely on touching the objects in order to count accurately. Teachers can encourage abstraction on a daily basis by counting claps or clicks. They can also count imaginary objects in their head to encourage counting on, this involves the children visualising objects.

The order-irrelevance principle. This involves children understanding that the order we count a group of objects is irrelevant. There will still be the same number.

Encourage children to count objects, left to right, right to left, top to bottom and bottom to top. Once children have counted a group, move the objects and ask children how many there are, if they count them all again they have not fully grasped this principle.

New

Reception schemes of learning

Non-statutory curriculum mapping
September 2023

Introduction

The aim of this document is to give an at a glance guide to how the White Rose Maths Reception schemes of learning link to the two forms of non-statutory curriculum guidance for the EYFS, Development Matters (DFE 2021) and Birth to 5 Matters (Early Education 2021)
These statements are taken from documents that explicitly say they are suggestions of what "children will be learning to do" and "what children might be doing". They are not to be used or intended to be focused on as a tick list.

Composition of 1, 2 and 3		सิ่าพิ
Notes and guidance	Key questions	
-	- menemetmiest	
	Pessible sentence stems	
 ise thetr poly		
) Rhymes		
mwinsmon	Links to the curriculum	
	anmbx	
Books	 	

On each of our small steps we reference where in both documents there are links to the curriculum so teachers can see this direct link as you teach each small step.

Many schools require teachers to show coverage. This document is designed to support teachers in Reception to easily show this.
Each of the major topic areas have been broken down into key mathematical concepts so you can then see which statements from both documents are covered together with the term and block of the White Rose Maths Reception scheme.
This document gives teachers confidence of the wide coverage given in the White Rose Maths Reception schemes.

Number

Comparison

White Rose

M.THS

Cardinality

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
- Develop fast recognition of up to 3 objects, without having to count them individually ('subitising'). - Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle'). - Show 'finger numbers' up to 5 .	- Subitise - Link the number symbol (numeral) with its cardinal number value.	- Subitises one, two and three objects (without counting) - Counts up to five items, recognising that the last number said represents the total counted so far (cardinal principle) - Links numerals with amounts up to 5 and maybe beyond - Explores using a range of their own marks and signs to which they ascribe mathematical meanings	- Engages in subitising numbers to four and maybe five - Counts out up to 10 objects from a larger group - Matches the numeral with a group of items to show how many there are (up to 10)
Autumn 3, Autumn 5 Spring 1	Autumn 3, Autumn 5 Spring 1, Spring 3, Spring 5 Summer 6	Autumn 3, Autumn 5 Spring 1 Summer 2	Autumn 5 Spring 1, Spring 3, Spring 5 Summer 4

Composition

White Rose
 M.THS

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
- Solve real world mathematical problems with numbers up to 5 .	- Understand the 'one more than/one less than' relationship between consecutive numbers. - Explore the composition of numbers to 10 . - Automatically recall number bonds for numbers $0-5$ and some to 10 .	- Through play and exploration, beginning to learn that numbers are made up (composed) of smaller numbers - Beginning to use understanding of number to solve practical problems in play and meaningful activities - Beginning to recognise that each counting number is one more than the one before - Separates a group of three or four objects in different ways, beginning to recognise that the total is still the same	- Shows awareness that numbers are made up (composed) of smaller numbers, exploring partitioning in different ways with a wide range of objects - Begins to conceptually subitise larger numbers by subitising smaller groups within the number, e.g. sees six raisins on a plate as three and three - In practical activities, adds one and subtracts one with numbers to 10 - Begins to explore and work out mathematical problems, using signs and strategies of their own choice, including (when appropriate) standard numerals, tallies and "+" or "-"
Autumn 5 Spring 1	Autumn 3, Autumn 5 Spring 1, Spring 3, Spring 5 Summer 2, Summer 4, Summer 6	Autumn 3, Autumn 5 Spring 1	Autumn 5 Spring 1, Spring 3, Spring 5 Summer 2, Summer 4, Summer 6

Shape, space and measure

Spatial awareness

Development matters		Birth to 5 matters	

Shape

Pattern

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
- Make comparisons between objects relating to size, length, weight and capacity. - Begin to describe a sequence of events, real or fictional, using words such as 'first', 'then...'	- Compare length, weight and capacity.	- In meaningful contexts, finds the longer or shorter, heavier or lighter and more/less full of two items - Recalls a sequence of events in everyday life and stories.	- Enjoys tackling problems involving prediction and discussion of comparisons of length, weight or capacity. paying attention to fairness and accuracy - Becomes familiar with measuring tools in everyday experiences and play - Is increasingly able to order and sequence events using everyday language related to time - Beginning to experience measuring time with timers and calendars
Autumn 2 Spring 2, Spring 4 Summer 5	Spring 2, Spring 4 Summer 6	Autumn 2, Autumn 6 Spring 4	$\underset{\substack{\text { Autumn } 6 \\ \text { Spring 2, Spring } 4 \\ \text { Summer } 6}}{ }$

Reception Mastering Number Overview -Aut Term

Pupils will build on previous experiences of number from their home and nursery environments, and further develop their subitising and counting skills. They will explore the composition of numbers within 5 . They will begin to compare sets of objects and use the language of comparison. Pupils will:

- identify when a set can be subitised and when counting is needed
- subitise different arrangements, both unstructured and structured, including using the Hungarian number frame
- make different arrangements of numbers within 5 and talk about what they can see, to develop their conceptual subitising skills
- spot smaller numbers 'hiding' inside larger numbers
- connect quantities and numbers to finger patterns and explore different ways of representing numbers on their fingers
- hear and join in with the counting sequence, and connect this to the 'staircase' pattern of the counting numbers, seeing that each number is made of one more than the previous number
- develop counting skills and knowledge, including: that the last number in the count tells us 'how many' (cardinality); to be accurate in counting, each thing must be counted once and once only and in any order; the need for 1:1 correspondence; understanding that anything can be counted, including actions and sounds
- compare sets of objects by matching
- begin to develop the language of 'whole' when talking about objects which have parts

Reception Mastering Number Overview -Spr Term

Pupils will continue to develop their subitising and counting skills and explore the composition of numbers within and beyond 5. They will begin to identify when two sets are equal or unequal and connect two equal groups to doubles. They will begin to connect quantities to numerals.

Pupils will:

- continue to develop their subitising skills for numbers within and beyond 5 , and increasingly connect quantities to numerals
- begin to identify missing parts for numbers within 5
- explore the structure of the numbers 6 and 7 as ' 5 and a bit' and connect this to finger patterns and the Hungarian number frame
- focus on equal and unequal groups when comparing numbers
- understand that two equal groups can be called a 'double' and connect this to finger patterns • sort odd and even numbers according to their 'shape'
- continue to develop their understanding of the counting sequence and link cardinality and ordinality through the 'staircase' pattern • order numbers and play track games
- join in with verbal counts beyond 20, hearing the repeated pattern within the counting numbers

Reception Mastering Number Overview - Sum Term

Pupils will consolidate their counting skills, counting to larger numbers and developing a wider range of counting strategies. They will secure knowledge of number facts through varied practice.
Pupils will:

- continue to develop their counting skills, counting larger sets as well as counting actions and sounds
- explore a range of representations of numbers, including the 10-frame, and see how doubles can be arranged in a 10-frame - compare quantities and numbers, including sets of objects which have different attributes
- continue to develop a sense of magnitude, e.g. knowing that 8 is quite a lot more than 2 , but 4 is only a little bit more than 2
- begin to generalise about 'one more than' and 'one less than' numbers within 10 • continue to identify when sets can be subitised and when counting is necessary
- develop conceptual subitising skills including when using a rekenrek

YEAR I
\qquad

YEAR 1 Overview

Yearly overview
The yearly overview provides suggested timings for each block of learning, which can be adapted to suit different term dotes or other requirements.
*Adjustments made-Year 1 will be planning to cover 'Geometry-Space' in Aut 1 and bring 'Place Value (Within 20)' forward into Aut 2.

Y1 Mastering Number Overview -Aut Term

Pupils will have an opportunity to consolidate the Early Learning Goals and continue to explore the composition of numbers within 10, and the position of these numbers in the linear number system.

Pupils will: • subitise within 5 , including when using a rekenrek, and re-cap the composition of 5

- develop their understanding of the numbers 6 to 9 using the ' 5 and a bit' structure
- compare numbers within 10 and use precise mathematical language when doing so
- re-cap the order of numbers within 10 and connect this to ' 1 more' and ' 1 less' than a given number
- explore the structure of even numbers (including that even numbers can be composed by doubling any number, and can be composed of 2 s)
- explore the structure of the odd numbers as being composed of 2 s and 1 more \bullet explore the composition of each of the numbers 6,8 , and 10
- explore number tracks and number lines and identify the differences between them

This term will build and consolidate the Early Learning Goals and support the teaching and consolidation of the following RtP criteria: • 1AS-1 • 1NF-1•1NPV-2

Y1 Mastering Number Overview -Spr Term

Pupils will continue to explore the composition of numbers within 10 and explore addition and subtraction structures and the related language (without the use of symbols).
Pupils will:

- explore the composition of each of the numbers 7 and 9
- explore the composition of odd and even numbers, seeing that even numbers can be made of two odd or two even parts, and that odd numbers can be composed of one odd part and one even part
- identify the number that is two more or two less than a given odd or even number, identifying that two more/ less than an odd number is the next/ previous odd number, and two more/ less than an even number is the next/ previous even numberexplore the aggregation and partitioning structures of addition and subtraction through systematically partitioning and re-combining numbers within 10 and connecting this to the part-part-whole diagram, including using the language of parts and wholes
- explore the augmentation and reduction structures of addition and reduction using number stories, including introducing the 'first, then, now' language structure
This term will particularly support the teaching and consolidation of the following RtP criteria:
- 1AS-1•1NF-1

Y1 Mastering Number Overview -Sum Term

Pupils will explore the composition of numbers within 20 and their position in the linear number system. They will connect addition and subtraction expressions and equations to 'number stories').

Pupils will:

- explore the composition of the numbers 11 to 19 as ' 10 and a bit' and compare numbers within 20
- connect the composition of the numbers 11 to 19 to their position in the linear number system, including identifying the midpoints of 5,10 and $15 \cdot$ compare numbers within 20
- understand how addition and subtraction equations can represent previously explored structures of addition and subtraction (aggregation/ partitioning/ augmentation/ reduction)
- practise retrieving previously taught facts and reason about these

This term will particularly support the teaching and consolidation of the following RtP criteria:

- 1AS-2, 1NF-1, 1NPV-2

Y1 Aut 1- - Maths

NC PoS	Key Concepts L ink	Key Competencies	Vocabulary	Activity
Number - Number and Place Valu count to and across 100, forwards and from any given number *count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens *given a number, identify one more and one less *identify and represent numbers using objects and pictorial representations language of: equal to, more than, less than (fewer), most, least ead and numerals and words. Number-Addition and Subtraction Pupils should be taught to: thematical statements involving addition (+), subtraction $(-)$ and equals $(=)$ signs *represent and use number bonds and related subtraction facts within 20 [3 add and subtract one-digit and two-digit numbers to 20 , including zero \qquad addition and subtraction, using concrete and missing number problems such as 7 $=-$ Geometry - properties of shape Pupils should be taught to: 3-D shape and 2-D and example, rectangles (including squares) circles and triangles] cuboids (includin and spheres.	Topics build on a sequence of learning where mathematical concepts are connected Children will explore maths and present their findings not only in a written form but also visually Children will have a sound knowledge of subject vocabulary and will be able to use this in order to communicate and justify their ideas	Number and Place Value Count to and across 10, forwards and backwards, beginning with 0 or 1 , or from any given number Count, read and write numbers to 10 in numerals Given a number, identify one more and one less Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than, most, least Geometry - properties of shape Recognise and name common 2 - D shapes, including: (for example, rectangles (including squares), circles and triangles) Recognise and name common 3 - D shapes, including: (for example, cuboids (including cubes), pyramids and spheres.) Addition and Subtraction Represent and use number bonds and related subtraction facts within 10 Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals ($=$) signs Add and subtract one -digit and two digit numbers to 10 , including zero Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ こ_-9	Represent- to show things in different ways Total- the whole or complete amount Numeral- a mathematical way to say number. Greater- more/ less Sequence- a list of things in order Difference- the numerical difference between two numbers or sets of objects Equal- having the same value as Part- one of two or more smaller units that make up a whole Whole- a complete unit Number bond- pairs of numbers that add together to make a given number Face- Any of the individual flat surfaces of a solid object. Sides- One of the line segments that make a flat (2-dimensional) shape	1. How can we represent numbers to 10 ? Use a wide range of practical manipulatives to sort, count and represent amounts. Children compare different representations - which are the easiest to read and recognise? Children invent their own ways to represent numbers - Can they identify representations that are not accurate? Using their prior knowledge the children sort and group manipulatives to represent Broaden - How can you sort and group objects and amounts? What strategies can you use to count? What resources can you use to \qquad 2. How can we find 1 more and 1 less? Count forwards and backwards to identify numbers as we count along number tracks and pictorial number tracks. Apply understanding to complete missing numbers along the tracks. Find 1 more than groups of objects and take 1 away / cross out to find 1 less Enrich - How can you use a number track to find one more, one less? What strategies can you use to help you find the missing numbers? 3. How can we compare numbers and amounts? Identify numbers, number words and amounts of objects in a group using practical resources. Compare groups of objects / numbers using words and symbols. Apply understanding to predict how many could be in a group that is greater or smaller than a given group. 4. How can we order numbers and amounts? Apply knowledge of greater and less to compare numbers/amounts to order cards showing images (from smallest to largest and in reverse). Repeat with number cards. Use number lines and number tracks to support ordering numbers and complete missing numbers. Identify ordinal numbers. 5. What do 2d and 3d shapes look like? Use shapes and objects to identify, match and name 2d and 3d shapes. identify and describe shape properties. Trace around and label shapes. create patterns with shapes and describe and continue/complete patterns. (2d 3d shape names - circle rectangle, triangle, square, cone, cube, pyramid, cylinder, sphere, cuboid,) Enrich - What is a 2D shape? What is a 3D shape? Can you identify 6. Introduce and use part whole models. Begin to use the addition symbol Introduce part whole model. Explore adding parts to make whole. Explore finding a missing part. Identify addition symbol. Use a range of practical resources to explore the model and simple addition. Challenge - How can we find the missing number in the addition 7. Number bonds for and within 10 and fact families. Use practical resources to make number bonds. Look at and identify patterns made. Use Numicon and the ten frame to select pairs of numbers to make bonds to 10 . Apply understanding of addition to create simple fact families. bonds to 20?

Year 1-Aut 2- Maths (Addition and Subtraction Week 1-3)

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
Addition \& Subtraction: - read, write and interpret mathematic al statements involving addition (+), subtraction (-) and equals (=) signs -represent and use number bonds and related subtraction fa cts within 20 -add and subtract one-digit and two-digit numbers to 20 , including zero -solve one- step problems that involve addit ion and subtraction, using concr ete objects and pictorial represe ntations, and missing number pr oblems such as $7=-9$.	Sequenced steps-where mathematical concepts are connected for depth of understanding Adopting the mastery approach Calculate mentally and in written form.continually revisited and consolidated Gaps in learning will be identified and addressed quickly Interleaved learning - where previous linked learning is referred to when a new idea is introduced CPA approach Sound knowledge of subject vocabulary	-1NF-1:Represent and use number bonds and related subtraction facts within 20 Develop fluency in addition and subtraction facts within 10. -1AS-1: Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers. -1AS-2: Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs, and relate additive expressions and equations to real-life contexts.	Addition- Finding the total, or sum, by combining two or more numbers. Subtract- Taking one number away from another. This can be written: 5 $2=3$. Equals / Is the same as- Exactly the same amount or value Number bonds/pairs -pairs of numbers that make up a given number Missing numbers in a sequencenumbers that got missed in the given series of numbers with similar dif ferences among them. Sum/ Total-The result of adding two or more numbers	1AS-1 PP Compose and partition numbers to 10 1AS-2 PP Read, write and interpret additive equations 1.How can I solve a number problem? Children should apply their understanding of number bonds to solve missing number problems. Children should also be exposed to problems with one part and the whole being the same so they understand the role of zero. Extend - Can you write a number sentence for a word problem? Can you write a 'first, then and now' story for the picture provided? 2. What strategies can I use to subtract? Children are introduced to the language of subtraction and then the subtraction symbol. They will use concrete and pictorial representations. They are introduced to subtraction by partitioning, crossing out and counting back. Broaden - How can you subtract using a number line? What number do you need to start on? Which way are you jumping? 3. What is a fact family? Chidren will link addition and subtraction facts for the first time. Children count backwards to subtract. Children explore finding the difference as a form of subtraction. Enrich - How many subtraction sentences can you write? How many addition sentences can you write? What is the same and what is different about the number sentences?

Year 1 Aut 2 - Maths (Place Value Week 4\&5)

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
- count to and across 100, forwards and ba ckwards, beginning with 0 or 1 , or from any given number -count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens -identify and represent numbers using objects and pictorial repre sentations - read and write numbers from 1 to 20 in numerals and words. -given a number, identify one more and one less	Sequenced steps- where mathematical concepts are connected for depth of understanding Adopting the mastery approach Gaps in learning will be identified and addressed quickly Interleaved learning - where previous linked learning is referred to when a new idea is introduced CPA approach Sound knowledge of subject vocabulary	-1NPV-1 Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number -1NPV-2- Reason about the lo-cation of numbers to 20 within the linear number system, in cluding comparing us-ing $<>$ and $=$	Numeral-a symbol or name that stands for a number e.g. 3, 49 and twelve are all numerals Equal to, equivalent to - exactly the same amount or value (symbol =)	1. How can I represent teen numbers? Children will build upon their knowledge of counting forwards and backwards and introduce numbers 11-20. Children will explore the suffix teen and what this means. Children will match representations and numbers.in concrete and pictorial ways. Children will build on their language of more and less to apply their skills to find 1 more and 1 less than a number or amount. Clear modelling will be used to ensure understanding that 1 more is 1 one more rather than 1 ten. Extend - Can you represent teen numbers using base ten? How many tens and ones? Can you find one more or less of a given teen number? 2. What is the same and what is different? Once confident exploring and making numbers children will apply their understanding to compare numbers. They will continue to use the language greater than, less than, equal to. Children will apply their understanding of difference to find how many more. Children will build on ordering numbers to 10 applying this to numbers up to 20 . Children will order 3 groups of objects to support them to order 3 abstract numbers. Children will order abstract numbers supported by concrete objects or drawing pictorially. Challenge - Can you compare teen numbers and amounts using the correct language or symbols?

Year 1-Aut 2 - Maths (Measures Week 6\&7)

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
Compare, describe and solve practical problems for lengths, heights, weight/mass, capacity and volume	Topics will be broken down into manageable steps that build on a sequence of learning where mathem atical concepts are connected in order to ensure there is a real depth of understanding Teaching will ensure that pupils will have the necessary approp riate knowledge of facts, concepts and procedures required t o solve associated mathematical problem s and reasoning activities of a more complex nature Children will have a sound knowledge of subject vocabulary and will be able to use this in order to communicate and justify their ideas	-Compare, describe and solve practical problems for: lengths and heights (for example, long/short, longer/shorter, tall/short, double/half) -Compare, describe and solve practical problems for: mass/weight [for example, heavy/light, heavier than, lighter than]; capacity and volume	Compare - look at the differences Length - how long something is Height - how high something is Mass - the amount an object contains Weight - how heavy something is Volume - how much space Is in an object Capacity - the amount that something can hold	1.How can I measure length and height? Chidren use the language of length such as long, longer, short, shorter, tall taller. To understand that height is a oorm of length. Talk about which is longer /shorter. Taller / shorter Use language to compare different objects Broaden - Why is height a form of length? What is similar and what is different? 2. How can I measure weight and capacity? Children introduced to weight and mass for first time. Explore their understanding of heavy and light from own experiences. Children hold objects and describe using -heavy, light, heavier than, lighter than. Compare a range of objects. Explore the common misconception that larger = heavier. Use a balance scale to compare Explore the concept of volume in a practical way using a variety of containers. Compare volume of a container using vocab- full empty, nearly full, nearly empty. Compare the capacity of containers. Compare largest and smallest capacity. Enrich - If an object is bigger than another object, does that mean it will weigh more? If a container is taller than another, will it have a larger capacity?

Year 1-Spr 1 - Maths (Measures Week 1-3)

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
Compare, describe and solve practical problems for lengths, heights, weight/mass, capacity and volume	Sequenced steps- where mathematical concepts are connected for depth of understanding Adopting the mastery approach Gaps in learning will be identified and addressed quickly Interleaved learning where previous linked learning is referred to when a new idea is introduced CPA approach Sound knowledge of subject vocabulary	- Compare, describe and solve practical problems for: mass/weight [for example, heavy/light, heavier than, lighter than]; capacity and volume - Measure and begin to record the following: Lengths and heights, mass and weight, capacity and volume	Length - how long or short something is Height - how tall or short something is Compare - look at the differences Mass - the amount an object contains Weight - how heavy something is Volume - how much space Is in an object Capacity - the amount that something can hold	1. How can we measure the length and height of objects? Children compare lengths and heights of objects using the correct language for both. Children to use non-standard units to measure and record the length of everyday objects. Children to use a ruler to measure and record objects in centimetres. Children should also be exposed to objects that have the same length or height. Extend - Children to compare more than two items and put them in order of length or height. Which one is the longest? Which one is the shortest? How do you know it is longer/shorter? 2. How can mass be measured and compared? Children are introduced to mass, using the correct language to describe objects measured. Children will hold objects and describe them using vocabulary such as heavy, light, heavier than, lighter than before using the scales to check. Children to use non-standard units to balance the scales and record the mass of an object. Children to compare the objects they have weighed and use the language of 'heavier', 'lighter' and 'equal to'. Children can then use the symbols to compare these objects by weight. Broaden - If the object is large will that mean that it is heavy? If the object is small will that mean that it is light? 3. How can we measure capacity and volume? Children are introduced to volume and capacity and the language used to describe them. They explore the concept in a practical way, using a variety of containers and nonstandard units of measure. They compare the volume in a container by describing whether it is full, nearly full, empty or nearly empty. Children compare the capacity of different containers using non-standard units of measure. They use 'more', 'less' and 'equal to' to compare as well as the symbols and $=$. Challenge - Can you put the containers in order of capacity?

Year 1-Spr 1 - Maths (Measures Addition wks 4-5)

NC PoS

Addition \&

 Subtraction:- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two digit numbers to 20 , including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$.

Key Concepts Link Key Competencies

Sequenced steps-where \quad - 1NF-1:Represent and use mathematical concepts are connected for depth of understanding

Adopting the mastery approach
Calculate mentally and in written form-continually revisited and consolidated

Gaps in learning will be identified and addressed quickly

Interleaved learning - where

 previous linked learning is referred to when a new idea is introducedCPA approach
Sound knowledge of subject vocabulary
number bonds and related subtraction facts within 20 Develop fluency in addition and subtraction facts within 10.

- 1AS-1: Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.
- 1AS-2: Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs, and relate additive expressions and equations to real-life contexts.

1AS-1 PP Compose and partition numbers to 10

1AS-2 PP Read, write and interpret additive equations

Vocabulary

Addition- Finding the total, or sum, by combining two or more numbers.

Subtract- Taking one number away from another. This can be written: 5-2 = 3 .

Equals / Is the same as-

Exactly the same amount or value

Number bonds/pairs -pairs of numbers that make up a given number

Sum/ Total-The result of adding two or more numbers

Activity

1. What strategies can we use to add to 20?

Children explore addition by counting on from a given number. Children see that working systematically helps them to find all the possible number bonds to 20 . Children to use their knowledge of number bonds to 10 to find number bonds to 20 . Children will be encouraged to see the link between bonds to 10 and bonds to 20 and reinforces their understanding of place value.

Children add numbers within 20 using their knowledge of number bonds. It is important that children work practically using ten frames and/or number lines to help them see how number bonds to 10 can help them calculate. They will move towards using this as a mental strategy.
Broaden - Create links to prior learning
What is the same and what is different about 4 and 14? If you know that 4 plus 2 is equal to 16 , how can you use this to work out 14 plus 2? What do you notice about $14+2$ and $12+4$? How many tens are there in each addition? How many ones are there? Challenge - Children to explore missing number problems.

YEAR 2

YEAR 2 Overview

Yearly overview The yearly overview provides suggested timings for each block of learning, which can be adapted to suit different term dates or other requirements.

Y2 Mastering Number Overview -Aut Term

Pupils will have an opportunity to consolidate their understanding and recall of number bonds within 10; they will re-cap the composition of the numbers 11 to $\mathbf{2 0}$ and reason about their position within the linear number system.

Pupils will: • review the composition of the numbers 6 to 9 as ' 5 and a bit'

- compare numbers using the language of comparison and use the symbols < > =
- review the structure of even numbers (including exploring how even numbers can be composed of two odd parts or two even parts) and the composition of each of 6,8 and 10
- review the structure of odd numbers (including exploring how odd numbers can be composed of one odd part and one even part) and the composition of each of 7 and 9
- consolidate their understanding of the numbers 10 and 20 as ' 10 and a bit'
- consolidate their understanding of the linear number system to 20 and reason about midpoints

This term will particularly support the teaching and consolidation of the following RtP criteria:

- 1NPV-2 • 2NF-1

Y2 Mastering Number Overview -Spr Term

Pupils s will have an opportunity to use their knowledge of the composition of numbers within 10 to calculate within 20; they will explore the links between the numbers in the linear number system within 10 to numbers within 100, focusing on multiples of 10 and the midpoint of 50 .

Pupils will:

- explore how the numbers 6 to 9 can be doubled using the ' 5 and a bit' and ' 10 and a bit' structure
- use doubles to calculate near doubles
- use bonds of 10 to reason about bonds of 20, in which the given addend is greater than 10
- use known number bonds within 10 to calculate within 20 , working within the 10 -boundary
- use their knowledge of bonds of 10 to find three addends that sum to 10
- use their knowledge of the composition of numbers within 20 to add and subtract across the 10-boundary
- use their understanding of the linear number system to 10 to position multiples of 10 on a 0-100 number line and reason about midpoints
This term will particularly support the teaching and consolidation of the following RtP criteria:
2NPV-2• 2NF-1• 2AS-1

Y2 Mastering Number Overview -Sum Term

Pupils will have further opportunities to use their knowledge of the composition of numbers within 10 to calculate within 20 and to reason about equations and inequalities.
Pupils will:

- continue to explore a range of strategies to subtract across the 10-boundary
- review bonds of 20 in which the given addend is greater than 10, and reason about bonds of 20 , in which the given addend is less than 10
- practise previously explored strategies to support their reasoning about inequalities and equations
- review doubles and near doubles and transform additions in which two addends are adjacent odd/ even numbers into doubles
- consolidate previously taught facts and strategies through continued, varied practice

This term will particularly support the teaching and consolidation of the following RtP criteria:

- 2NF-1 • 2AS-1 • 2AS-2

NC PoS

-Become fluent

 in the fundamentals of mathematics: ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources.Pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary.

Reason mathematicall y by following a line

of enquiry.

-To problem
solve Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling.
Key Concepts Link
-Mathematical concepts are connected in order to ensure there is a real depth of understanding
-Adopting the mastery approach
-The ability to calculate both mentally and in written form
-To rapidly recall key facts -Interleaved learning and regular repetition to pre viously linked learning and th en referred to when a new idea is introduced.
-Children will
have appropriate knowledge of facts, concepts and procedures required to solve associated mathematical pr oblems
and reasoning activities of a more complex nature
-Gaps in learning will
be identified and addressed quickly
-Children will explore maths and present their findings in a written and visual form; concrete, pictorial, abstract (CPA).

Key Competencies

Place Value - 2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning.
2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10

- I can read and write numbers to 100 in words
- I can identify and recognise the value of each digit in two-digit numbers
- I can describe and represent numbers using different representations including the number line.
- I can estimate numbers using different representations including the number line.
- I can apply my understanding of number by comparing and order numbers from 0 up to 100 ; use $<,>$ and $=$ signs
- I can apply my understanding of place value and number facts to solve problems.
- I can recall counting in steps of 2,3 and 5 from 0 , and in tens from any number, forwards and backwards.
- To argue their reasoning when solving and explaining problems.

Addition and Subtraction

2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice.
2AS-1 Add and subtract across 10
2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number.

- I can recall and complete addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- I can add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two -digit number and ones; a two -digit number and tens; two two-digit numbers; adding three one -digit numbers
- I can show that the addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.

Activity

Place Value - Children to represent numbers to 100 using manipulatives including base ten as well as jottings/numbers on a part whole model/place value chart. Children will then demonstrate their understanding of place value by partitioning numbers to 100 and flexibly partition to the tens to numbers to 100 . They will then be shown how to write the flexible partitions in expanded form Challenge - How many different ways can you partition the number ? and what do you notice?
The children will then use their understanding of place value to identify 10 s on the number line to 100,10 s and 1 s on the number line to 100 and then estimate numbers on the number line Broaden - Explain how can you estimate a number when there are missing numbers
The children will then begin to compare objects and numbers to 100 and order amounts. Challenge - When comparing numbers, the number with more ones is always the greater number. Explain your reasoning.
The children will then learn to count in 2 's, 5's, 10's and 3's and begin to identify patterns. Expand - Is this true, sometimes true or never true? - When counting in 5 s from zero, the numbers you say are even? - Assessment - WR Enrty and End Block Place Value

Addition and Subtraction - Children will begin by identifying number bonds within 10. They will see ten frames and other presentations to help complete a range of number bonds calculations. Children to use resources to make fact families - addition and subtraction bonds to 20 and record the calculations. Show strategies to enable
to chn to be able to check calculations. Broaden - If $3+5=8$, what is $30+50$? How do you know?
Children will use previous strategies taught to derive and use related facts for 100 . The children will then use strategies to add
and subtract 1-digit numbers from 2-digit numbers. The childrewn will then recap their understanding of doubles/number bonds to 10 to add three-digit numbers - Challenge - Investigate the 3 different digits that could be used from 1-9 that total 21
Assessment - WR Entry (End Block - to be completed Aut 2)

Year 2 -Aut 2 Maths

NC PoS
-Become fluent

Pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary.

Reason mathematica lly by following a line of enquiry.
-To problem solve Pupils should read and spell mathematical vocabulary, at a leve consistent with their increasing word reading and spelling.

Key Concepts Link

Sequenced steps Mathematical concepts are connected in order to ensure there is a depth of understanding

-Adopting the mastery

 approachCalculate mentally and in written formcontinually revisited and consolidated

Interleaved learning

 where previously linked learnin g and then referred to when a new idea is introduced.Solve problems and complete reasoning activities- to solve associated mathematical problems and reasoning activities of a more complex nature

CPA Approach (Concrete, pictorial, abstract)

Sound knowledge and use of subject vocabulary

Key Competencies

Number: Addition and

Subtraction
2AS-1 - Add and subtract across 10
2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?".
2AS-3 - Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two digit number. 2AS-4 - Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers.

Number Facts

2NF-1 Secure fluency in addition and subtraction facts within 10 , through continued practice.

Shape:

2G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.

Vocabulary

Addition and

 subtraction: Addition, make, sum, total altogether double one more, two more ... ten more ... one hundred more subtract take away one less, two less, ten less ... one hundred less difference between equals is the same as number bonds/pairs/facts tens boundary
Shape:

2-D shape - corner, side point, pointed rectangle (including square), rectangular circle, circular triangle, triangular pentagon hexagon octagon

3-D shape - face, edge, vertex, vertices cube, cuboid pyramid sphere cone cylinder Symmetry

Activity

Number: Number facts - Recap and revisit numbers Bonds to and within 10 and 20 (use rekenrek to support). When looking at number bonds to 20 , focus on fact families and how to record. Show how to use Related facts to solve calculations and move onto to solving numbers bond to 100 . Move onto then adding and subtracting a 1's number a 2 -digit number, not crossing 10 . Use mental strategies as well as manipulatives. Challenge - what is the most effective way to solve the calculation?
Addition + Subtraction: Children to be shown how to add by making 10 first and then use to identify number bonds for 10 when adding three 1-digit numbers. Broaden - Does it matter what order you add the numbers in? Move onto adding to the next lot of 10 and then move onto adding by crossing 10.
Repeat for subtraction as follows: across 10 , from a 10, subtract a 1-digit number from a 2 -digit number (across a 10). The children will identify 10 more, 10 less from any given number and then add and subtract 10s. Expand - Is it true that the ones number doesn't change when finding 10 more or 10 less? Prove it. Children will start to use manipulatives and jottings to add two 2-digit numbers (not across a 10), add two 2digit numbers (across a 10), subtract two 2-digit numbers (not across a 10) Subtract two 2-digit numbers (across a 10). They will then apply their understanding to solve mixed addition and subtraction and compare number sentences Missing number problems. Challenge - Tom goes to the shop and had 89p to spend. He leaves the shop with change that is less than $8 p$ but greater than $3 p$. Investigate the different items he could have bought. End Block Assessment - Addition and Subtraction

Geometry: Shape

- Recognise 2-D and 3-D shapes - Children also need to be able to recognise 2-D shapes in different orientations and proportions.
- Count sides on 2-D shapes Children also need to understand that not all same-sided shapes look the same, such as irregular 2-D shapes. Explore - do shapes with the same number of sides always look the same? - Count vertices on 2-D shapes - Introduce the terms vertex and vertices. Understand that a vertex is where two lines meet at a point. Ensure from this point forwards the word vertex is used in place of corner throughout all content. Explore - Do shapes always have the same number of sides and vertices - Draw 2-D shapes/Sort 2-D shapes
- Count faces/edges/vertices on 3-D shapes and use to sort 3-D shapes - Challenge - Dora wants to put a sticker on each face of some cubes. She has 60 stickers. How many cubes can she cover in stickers? - Make patterns with 2-d and 3-D shapes
- compare and sort common 2-D shapes and everyday objects recognise and name common 3-D
shapes/compare and sort common 3-D shapes and everyday objects - Expand - Can you explain what is the same and different between two different 3d shapes?
Introduce concept of vertical lines of symmetry - children to identify vertical lines of symmetry in shapes by folding and using mirrors. Use lines of symmetry to Complete shapes. Extend - Are there other lines of symmetry?
Assessment - Entry and Exit - Shape

Year 2- Spr 1- Maths

NC PoS	Key Concepts What are the links?	Key Competencies What are we learning and measuring?	Key Vocabulary What are we hearing?	Key Activities What are we doing? (Context)
-Become fluent in the fundamentals o f mathematics: ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources. Pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Reason mathematicall y by following a line of enquiry. -To problem solve Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling.	Sequenced steps Mathematical concepts are connected in order to ensure there is a depth of understanding -Adopting the mastery approach Calculate mentally and in written formcontinually revisited and consolidated Interleaved learning where previously linked learning and then referred to when a new idea is introduced. Solve problems and complete reasoning activities- to solve associated mathem atical problems and reasoning activities o fa more complex nature CPA Approach (Concrete, pictorial, abstract) Sound knowledge and use of subject vocabulary	Shape: 2G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another. Measurement: Money 2NPV-2 - Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . 2AS-2-Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?". Number: Multiplication 2MD-1 - Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. 2MD-2-Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division).	Shape: Sides - individual lines that make up a 2D shape Vertices- corners where the edges/sides meet 2D - two-dimensional, only have two dimensions: length and width. Face - the flat surfaces. Edge - the place where two faces meet. Vertex - the corner where two or more edges/sides meet. 3D-3D shapes have three dimensions: length, width and height. Money: buy, bought - in exchange for payment Sell, sold - give or hand over something in exchange for money Change - the difference in money, returned to the buyer, between what is paid for something and the lesser amount that it costs Multiplication and Division: Repeated addition-addition of the same number e.g. $3+3+3$ Multiplier- The number that you are multiplying by Multiplicand-The number that gets multiplied Product- The answer when two or more values are multiplied together. Row- Numbers can go across/along a row in a straight line Column- Numbers can go up or down a column in a vertical arrangement	Geometry: Shape - Count faces/edges/vertices on 3-D shapes and use to sort 3-D shapes - Make patterns with 2-d and 3-D shapes - compare and sort common 2-D shapes/3d shapes and everyday objects recognise Assessment - Exit - Shape Addition and Subtraction: Applying knowledge Measurement: Money - Children will recognise and know the value of different denominations of coins and notes and use their knowledge of place value to match coins with equivalent values. Introduce the $£$ and p symbols for the first time. Children will then count in $1 \mathrm{p}, 2 \mathrm{p}, 5 \mathrm{p}$ and 10 p coins. Then count in pounds. Children must be aware that both coins and notes are used to represent amounts in pounds. Children will then count pounds and pence together. Children compare two different values in either pounds or pence and will build on their knowledge of addition to add money as well as find the difference. Children build on their subtraction skills by finding change from a given amount. Assessment - WRH Money - End Block Multiplication - Recognise, make (sharing/grouping) and add equal groups. What is an array? Look for arrays in classroom and in real life context. Make arrays as a class. - using and understanding arrays - Understand and recognise the multiplication symbol . - Making doubles/2/5/10 times tables/Making Equal Groups - Sharing and Grouping Assessment - Multiplication and Division

YEAR 3

YEAR 3 Overview

Yearly overview
The yearly overview provides suggested timings for each block of learning, which can be adapted to suit different term dates or other requirements.

	Week 1 Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
欵	Number Place value		Number Addition and subtraction					Number Multiplication and division \mathbf{A}			
$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \end{aligned}$	Number Multiplication and division B		Measurement Length and perimeter			Number Fractions A			Measurement Mass and capacity		
	Number Fractions B	Measurement Money		Measurement Time			Geometry Shape		Stati	tics	든 믕 믕 등

Year 3 - Aut 1 Maths - Place Value

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
- count from 0 in multiples of 4,8 , 50 and 100; find 10 or 100 more or less than a given number. - recognise the place value of each digit in a 3digit number (100s, 10s, 1s) - compare and order numbers up to 1,000 - identify, represent and estimate numbers using different representations - read and write numbers up to 1,000 in numerals and in words - solve number problems and practical problems involving these ideas.	Manageable, sequenced small steps Mastery approach to embed understanding Rapid recall of key facts Repetition CPA Approach Key vocabulary use	3NPV-1 - Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 ; apply this to identify and work out how many 10s there are in other three-digit multiples of 10 3NPV-2 - Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and nonstandard partitioning. 3NPV-3 - Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10. 3NPV-4 - Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with 2 , 4, 5 and 10 equal parts.	numeral count in ones, twos, fives, tens, threes, fours, eights, fifties and so on to hundreds pattern ones tens, hundreds digit one-, two- or three-digit number place, place value one more, ten more, one hundred more one less, ten less, one hundred less	Children will represent numbers to 100 using a range of concrete materials, such as counters and Base 10 equipment etc. Children use a part-whole model to explore how tens and ones can be partitioned and recombined to make a total. Children explore numbers to 1000 and show them with concrete and pictorial representations. Children understand that a 3 -digit number is made up of 100 s , 10 s and 1 s . They read numbers shown in different representations on a place value grid, and write them in numerals. Children use place value counters to represent different numbers and understand how a number is made. Children estimate, work out and write numbers on a number line. Building on children's learning in Year 2 they explore finding one more/less, children now move onto finding 10 and 100 more or less than a given number. Children recap finding one more or less by making the number concretely before pictorials and numerals. Children use objects to represent numbers to 1,000 . When given two numbers represented by objects, they use comparative language and symbols to determine which is greatest/smallest. Children make the numbers using concrete manipulatives and draw them pictorially. Children compare numbers presented as numerals rather than objects. Children explore ordering a set of numbers from smallest to greatest and greatest to smallest. Children use Base 10 or other concrete materials to help them to make decisions about ordering. Children use their knowledge of the patterns in the 5 times table to count in steps of 50. Children identify the pattern.

Year 3- Aut 1 Maths - Addition and subtraction

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
- Add and subtract numbers using concrete objects, pictorial representations and mentally. - Add and subtract numbe rs with up to 3 digits, using formal written method of column addition and subtraction.	Manageable, sequenced small steps Mastery approach to embed understanding Rapid recall of key facts Repetition CPA Approach Key vocabulary use	3NF-1 - Secure fluency in addition and subtraction facts that bridge 10, through continued practice. 3AS-1 - Calculate complements to 100. 3AS2 - Add and subtract up to threedigit numbers using columnar methods. 3AS-3 - Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.	Addition Total Altogether Sum how many more to make ...? How many more is ... than ...? how much more is ...? subtract take away how many are left/left over? difference between equals bonds/pa irs/facts missing number tens boundary, hundreds boundary	Children are introduced to adding numbers greater than 100 They will apply their prior knowledge of adding and subtracting ones and tens to adding and subtracting multiples of 100 Using concrete manipulatives and pictorial representations throughout is important so the children can see the value of the digits. Children should start seeing the pattern when we add and subtract 1 and comment upon what happens. This is the step before finding ten more than or ten less than, as bridging beyond a 10 should not be attempted yet. The pattern should be highlighted also by adding 2 (by adding another one) and then adding 3 Children add and subtract ones from a 3-digit number without an exchange. They consider which digits are affected when adding ones. For example, if a child is completing 214-3 and $214+3$ they see that they just need to focus on the ones column. Therefore, all they need to do is $4+3$ and $4-3$ respectively. The use of the column method can be used but mental arithmetic is the best strategy. Children add ones to a 3-digit number, with an exchange. They discover that when adding ones it can affect the ones column and the tens column. Children subtract a 1-digit number from a 3-digit number using an exchange.

Year 3 Aut 2 Maths - Addition and subtraction

NC PoS	KEY CONCEPTS	KEY COMPETENCIES	$\begin{gathered} \text { KEY } \\ \text { VOCABULARY } \end{gathered}$	KEY ACTIVITIES
- Add and subtract numbers using concrete objects, pictorial representations and mentally. - Add and subtract numbe rs with up to 3 digits, using formal written method of column addition and subtraction.	Manageable, sequenced small steps Mastery approach to embed understanding Rapid recall of key facts Repetition CPA Approach Key vocabulary use	3AS2 - Add and subtract up to three-digit numbers using columnar methods. Add and subtract 100s - Spot the pattern - making it explicit - Mixed addition and subtraction problems - Add and subtract 2-digit \& 3-digit numbers- not crossing 10 or 100 - Add 2-digit and 3-digit numbers - crossing 10 or 100 - Subtract a 2-digit number from a 3-digit number crossing 10 or 100 - Add two 3-digit numbers - not crossing 10 or 100 - Add two 3-digit numbers - crossing 10 or 100 - Subtract a 3-digit number from a 3-digit number no exchange - Subtract a 3-digit number from a 3-digit number exchange	Addition Total Altogether Sum how many more to make ...? How many more is ... than ...? how much more is ...? subtract take away how many are left/left over? difference between equals bonds/pairs/fac ts missing number tens boundary, hundreds boundary	3AS2 Children are introduced to adding numbers greater than 100 They will apply their prior knowledge of adding and subtracting ones and tens to adding and subtracting multiples of 100 Using concrete manipulatives and pictorial representations throughout is important so the children can see the value of the digits. Children should start seeing the pattern when we add and subtract 1 and comment upon what happens. This is the step before finding ten more than or ten less than, as bridging beyond a 10 should not be attempted yet. The pattern should be highlighted also by adding 2 (by adding another one) and then adding 3 Children add and subtract ones from a 3-digit number without an exchange. They consider which digits are affected when adding ones. For example, if a child is completing $214-3$ and $214+3$ they see that they just need to focus on the ones column. Therefore, all they need to do is $4+3$ and $4-3$ respectively. The use of the column method can be used but mental arithmetic is the best strategy. Children add ones to a 3-digit number, with an exchange. They discover that when adding ones it can affect the ones column and the tens column. Children subtract a 1-digit number from a 3-digit number using an exchange.

Year 3- Aut 2 Maths - Multiplication and Division

NC PoS	KEY CONCEPTS	KEY COMPETENCIES	$\begin{gathered} \text { KEY } \\ \text { VOCABULARY } \end{gathered}$	KEY ACTIVITIES
- Recall and use multiplication and division facts for the 3,4, and 8 multiplication tables. - Write and calculate mathematical st atements for multiplication and division using the tables they know including for 2 digit numbers times 1 digit numbers using mental and progressing to formal methods.	Pathway 3 Multiplication and Division Manageable, sequenced small steps Mastery approach to embed understanding Rapid recall of key facts Fluency Repetition Repetition and structure Key vocabulary use	2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product. 2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotative division). 3NF-2 Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number	multiple, factor lots of, groups of product repeated addition division grouping equal groups array multiplication fact division fact fact families	3MD-1 - Multiplication and division structure 2MD-1 - Multiplication as repeated addition 2MD-2 - Grouping problems: missing factors and division Pupils recap their understanding of recognising, making and adding equal groups: preparing them for the next steps. Pupils explore the commutativity of multiplication facts e.g. $5 \times 2=2 \times 5$. The language 'lots of' is used. Pupils draw on their knowledge of counting in 3 s in order to start to multiply by 3 . Pupils use their knowledge of equal groups to use concrete and pictorial methods to solve questions multiplying by 3 . Pupils explore dividing by sharing into three equal groups and then grouping in threes. They use bar models to support this along with arrays. Pupils use this knowledge and draw on it to become fluent in the 3 times table. Building on knowledge of the 2 times table, pupils multiply by 4 . They link multiplying by 4 to doubling and then doubling again. They use a variety of methods both practical and pictorial. Pupils explore dividing by sharing into four equal groups and then grouping in fours. Pupils use their knowledge of $2,5,10,3$ times tables to learn the 4 s . They explore the commutativity of multiplication. Building on knowledge of the 4 times table, pupils multiply by 8 . Pupils understand that each multiple of 8 is double the equivalent multiple of 4 . Pupils explore divide by sharing and grouping. Pupils explore the fact families of the 8 times tables. Pupils complete reasoning and problem solving lessons combining this learning. Focused on explanations using the correct terminology.

Year 3- Spr 1 Maths - Multiplication and Division

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities
- Recall and use multiplication and division facts for the 3,4, and 8 multiplication tables. - Write and calculate mathematical st atements for multiplication and division using the tables they know including for 2 digit numbers times 1 digit numbers using mental and progressing to formal methods.	Manageable, sequenced small steps Mastery approach to embed understanding Rapid recall of key facts Fluency Repetition Repetition and structure Key vocabulary use	3NF-2 Recall multiplication facts, and corresponding division facts, in the 10,5,2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number. 3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10). 3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.	multiple, factor lots of, groups of product repeated addition division grouping equal groups array multiplication fact division fact fact families	3MD-1 - Multiplication and division structure 3NF-2 - Recall of multiplication tables 3NF-3 - Scaling number facts by 10 Pupils will recap the concept of multiplication so they can apply this to multiplication tables. Images, as well as number tracks, will be used to encourage children to count in twos. Resources such as cubes and number pieces will be used to explore equal groups within the 2 timestable. Children use knowledge of known multiplication tables ($2,3,5$ and 10 times tables) and understanding of key concepts of multiplication to develop knowledge of the 4 and 8 times table. Notes and Guidance Mathematical Talk Varied Fluency Children use their knowledge of multiplication and division facts to compare statements using inequality symbols. Pupils use known multiplication facts to solve other multiplication problems. Pupils understand that because one of the numbers in the calculation is ten times bigger, then the answer will also be ten times bigger. Children use their understanding of repeated addition to represent a two-digit number multiplied by a one-digit number with concrete manipulatives. They use the formal method of column multiplication alongside the concrete representation. Pupils explore firstly with no exchange and then with exchange. . Each question in this step builds in difficulty. Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups. Beginning with no exchange, exchange and then remainders, Links are made between division and repeated subtraction, which builds on learning in Year 2. Pupils explore scaling problems using bar models.

Year 3- Spr 1 Maths - Length \& Perimeter

NCPoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities
- Interpret and present data using bar charts, pictograms and tables. - Solve one step and two step questions e.g. How many more?, How many fewer? Using information presented in scaled bar charts, pictograms and tables	Manageable, sequenced small steps Mastery approach to embed understanding Rapid recall of key facts Fluency Repetition Repetition and structure Key vocabulary use	3NPV3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10 3NF3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).	Metres Centimetres Millimetres Equivalent Lengths Perimeter Greater than Less than Equal to	In Year 2, children used metres or centimetres to measure the length of objects. In this small step, they revise these skills, initially using a ruler to measure objects in centimetres. They then combine both units of measurement, such as 1 m and 20 cm (measuring the lengths of desks/heights of children in the class). Children need to understand that 1 mm is smaller than 1 cm and that millimetres can be used to measure lengths that are not an exact number of centimetres. Children explore a ruler with millimetre markings to see that there are 10 mm in 1 cm . Children are encouraged to count in 10 s and add on the remaining 1 s when finding lengths. Children piggyback learning from the previous steps to measure objects in centimetres and millimetres. Measurements should be recorded in the form " 4 cm and 3 mm ". Children compare and consider the appropriateness of different units of measurement. Which unit would you use to measure this? Why? Children use the fact that 1 m is equivalent to 100 cm . They use this to convert multiples of 100 cm into metres and metres into multiples of 100 cm . Children use the fact that 1 cm is equivalent to 10 mm . They use this to convert millimetres into centimetres and centimetres into millimetres. Children compare and order lengths using comparison language and inequality symbols. They convert measurements to the same unit of length to compare. Children add lengths. They begin with lengths measured in the same unit, before adding lengths that have different unit. Children begin by subtracting lengths that are measured in the same unit of measurement. They then look at subtracting millimetres from a whole number of centimetres as well as centimetres from a whole number of metres using simple conversions. Children are introduced to perimeter. Children learn that perimeter is the distance around the outside of a closed 2-D shape. Children measure the sides of different shapes in centimetres to find perimeter. Children use their understanding of the properties of different shapes to calculate the perimeter of simple 2-D shapes.

YEAR 4

YEAR 4 Overview

NC PoS
Pupils should be taught to:

Key
 Concepts
 Link

Curriculum
 concepts:

Coherence

Lessons are broken down into small connected steps that gradually unfold the concept, providing access for all children

Fluency

Quick and efficient
recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics

Interleaved learning will support children in their ability to successfully commit previous learning into their long term memory. Therefor e the curriculum will have regular repetition

Key

Competencies

Pathway 1: Number- Place Value

4NPV-1

4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning.
4NPV-3
3NPV-4 divide 100 into 2, 4 and 10 equal parts.

1. LO: I can read and represent numbers to 1000.
2. LO: I can read and represent numbers containing thousands.
3. LO:I can identify the value of digits in 4 digit numbers.
4. LO: I can partition 4 digit numbers.
5. LO: I can partition numbers in different ways up to 10,000 .
6. LO: I can identify amounts up to 10,000 on a number line.
7. LO: I can estimate and identify numbers up to 10000 using a number line.
8. LO: I can compare 4 digit numbers.
9. LO: I can order 4 digit

Vocabulary \quad Activity

Value

Represent

Digit

Partition
Estimate
Ascending
Descending
Rounding
Number line
Roman Numeral
Greater than
Less than
Integer
Compare equal to $2,000^{\prime \prime}$ quantity? after 9999?

1. Children learned how to represent numbers to 1,000 in Year 3 - a concept that will be reinforced in this small step to ensure they have a sound understanding. Examples have been chosen to ensure that children look at representing and interpreting numbers that have no tens or no ones, to reinforce the idea of using zero as a placeholder.
Extend- What comes after 1000 how is this number made?
2. The initial focus of this small step is counting in 1,000 s forwards and backwards from any given multiple of 1,000. Children then look at the composition of multiples of 1,000 by exploring how many hundreds they are made of. They unitise the hundred, being able to state the number of hundreds that make up any 4-digit multiple of 100 or 1,000 such as " 20 hundreds are

Broaden- Where may thousands be used/ seen in every day life? Is it a big
3. Children represent numbers to 9,999, using concrete resources on a place value grid. They understand that a four digit number is made up of $1,000 \mathrm{~s}$, $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s. Moving on from Base 10 blocks, children start to partition by using place value counters and digits.
Extend- What is the next column on a place value grid? What number comes
4. The focus of this small step is to ensure that children have a secure understanding of place value with 4-digit numbers. Children partition a number up to 10,000 by identifying the number of thousands, hundreds, tens and ones They should give their answers using numerals, words and expanded form, for example $5,346=5$ thousands, 3 hundreds, 4 tens and 6 ones or 5,000 $+300+$
$40+6$. Children should experience questions that include zero as a
placeholder, so they understand this cannot be omitted, minimising the misconception that 5,006 = 56
Challenge- Is there only 1 way a number can be partitioned?
5. Children explore flexible partitioning of numbers up to 10,000 ,
understanding that the whole number can be split into parts in many different ways. . A key focus should be appreciating that, for example, 6,000 + 400 + $20+$ $9=5,000+1,400+20+9$, as this is crucial to understanding addition and subtraction of 4-digit numbers

Year 4- Aut 1 Maths - Addition and Subtraction
Weeks 6-8

NC PoS
Pupils should be taught to:

Key
 Concepts
 Link

Curriculum

 Concepts:
Coherence

Lessons are broken down into small connected steps that gradually unfold the concept, providing access for all children

Fluency

Quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics

Interleaved learning will support children in their ability to successfully commit previous learning into their long
erm memory. Therefor e the curriculum will have regular repetition

Key

Competencies

Pathway 2: Number- Addition

 and Subtraction
4NF-3 Apply place-value

 knowledge to known additive andmultiplicative number facts (scaling facts by 100) 3AS-3 missing number problems

1. LO: I can add and subtract 1 s , $10 \mathrm{~s}, 100$ s and $1,000 \mathrm{~s}$ 2. LO: I can add up to two 4-digit numbers (no exchange)
2. LO: I can add two 4-digit numbers (including one exchange)
4.LO: I can add two 4-digit numbers (more than one exchange)
3. LO: I can subtract two 4-digit numbers (no exchange).
4. LO: I can subtract two 4-digit numbers (one exchange)
5. LO: I can subtract two 4-digit numbers (more than one exchange).
6. LO: I can solve efficient subtraction calculations. 9. LO: I can estimate answers to calculations.

Vocabulary

Digit

 PartitionSum
Increase
Addend
Augend
Minus
Difference Subtrahend Minuend
Decrease
Exchange
Inverse
Efficient
Method
Estimate
Approximate

Activity

1. In this small step, children recap this learning and extend their understanding to dealing with 4 -digit numbers and adding and subtracting multiples of 1,000 . The focus is on mental rather than written strategies. Challenge- When adding to one column does this affect any others? 2. Children add 3 - or 4 -digit numbers with no exchanges, using concrete resources as well as the formal written method. The numbers being added together may have a different number of digits, so children need to take care to line up the digits correctly. Even though there will be no exchanging, the children should be encouraged to begin adding from the ones column. Broaden- When may adults use this method?
2. The numbers can be made using concrete manipulatives such as place value counters in a place value chart, alongside the formal written method Encourage to carry the one under the line and cross this out to avoid forgetting later on.
Challenge- What is exchange?
3. The numbers are made using place value counters in a place value chart alongside the formal written method. The addition begins from the smallest value column. With more than one exchange, it is important to model the correct place to write the number exchanged and to add it to the next column. Extend- Can you spot an exchange before carrying out the calculation? 5. Children subtract up to a 4 -digit number from a 4 -digit number with no exchanges, using concrete resources as well as the formal written method Ensure numbers are set out neatly to avoid mistakes when crossing out. Challenge- Explain how an exchange is made and why.
4. It is important that children complete the formal written method alongside any concrete manipulatives to support understanding. Before subtracting each column, ask, "Do you have enough ones/tens/hundreds to subtract ?" If not, then an exchange is needed. For this small step, the exchange could take place from the tens, hundreds or thousands, but there is only one exchange per calculation.
Extend- Can you spot an exchange before carrying out the calculation? How? 7. Children perform subtractions involving two separate exchanges (for example, from the thousands and from the tens) as well as those with two-part exchanges (for example, from the thousands down to the tens if there are no

Year 4- Spr 1 Maths - Number: Weeks 1-3 Multiplication and Division

NC PoS	Key Concepts	Key competencies	Key Vocabulary	Key Activity
Pupils should be taught to: recall multiplication and division facts for multiplication tables up to 12×12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. multiply two-digit and three-digit numbers by a one-digit number using formal written layout ? solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder	Coherence Lessons are broken down into small connected steps that gradually unfold the concept, providing access for all children Fluency Quick and efficient recall of facts and procedures and the flexibility to move between different contexts and representations of mathematics Interleaved learning will support children in their ability to successfully commit previous learning into their long term memory. Therefore the curriculum will have regular repetition.	Pathway 3: NumberMultiplication and Division Multiplication: 1.LO: I can find factor pairs of given numbers. 2.LO: I can work out multiplication problems by using different methods. 3. I can work out multiplication problems by choosing the most efficient method. 4. LO: I can multiply a 1 digit number by a 2 digit number. 5. LO: I can multiply a 1 digit number by a 2 digit number using the column method. 6. LO: I can multiply 3 digit numbers by 1 digit number using the column method. 7. LO: I can answer reasoning problems using column multiplication. Division: 8 and 9. LO: I can divide 2 digit numbers by a 1 digit number. 10. LO: I can divide 2 digit numbers by a 1 digit number including remainders. 11. LO: I can divide 3 digit	Multiplicand Multiplier Product Lots of Dividend Divisor Quotient Difference Sum Share Group Factor Repeated addition Part-part-whole Array Inverse Possibilities Correspondence Outcome	1. In this small step, children are introduced to factors for the first time. They learn that when they multiply two whole numbers to give a product, both the numbers that they multiplied together are factors of the product. For example, $3 \times 5=15$, so 3 and 5 are factors of 15.3 and 5 are also referred to as a "factor pair" of 15 They then generalise this further to conclude that a factor of a number is a whole number that divides into it exactly. Children create arrays using counters to develop their understanding of factor pairs. It is important for children to work systematically when finding the factor pairs of a number in order to ensure that they find all the factors. For example, when finding factor pairs of 12 , begin with 1×12, then $2 \times 6,3 \times 4$. At this stage, children should recognise that they have already used 4 in the previous calculation, therefore all factor pairs have been identified. Extend - the bigger the number, the more factors it will have. True or false? 2. In this small step, children build on their knowledge of factor pairs from the previous step as they use them to write equivalent calculations. For example, as 3 and 4 are a factor pair of 12 , this means that 5×12 is equivalent to $5 \times 3 \times$ 4 or $5 \times 4 \times 3$ Children explore equivalent calculations using different factors pairs, and then practise calculating with them to identify which factor pair produces the easiest calculation to complete mentally. The calculation that is deemed easiest will vary for different children, as they are likely to focus on using the times-tables they are most confident with. Children also look at the method of partitioning to find the answers to multiplication problems and try to choose an efficient method for the calculation given. Challenge - column multiplication is the quickest method. 3. In this small step, children consolidate their knowledge and understanding of multiplication and begin to make decisions regarding the most efficient or appropriate methods to use in a range of contexts. Children look at timestables facts, building strategies for finding unknown facts that will support them to strengthen their fluency of times-tables. They then examine a range of strategies for multiplying a 2-digit number by a 1-digit number. Finally, they use arrays to explore multiplicative structure, in particular the associative law and distributive law. Challenge - in multiplication I have to start with the largest number. 4. Children look at partitioning the number. They begin by using place value charts to recognise multiples of a number and make the link to repeated

Year 4-Aut 2 Maths - Measurement (Area):1 week

NC PoS	Key Concepts Link	Key Competencies	Vocabulary
Pupils should be taught to: Convert between different units of measure [for example, kilometre to metre; hour to minute] measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	Equipping children with a broad range of vital skills which can be applied not only within school but used in everyday life. Representation and Structure Representations used in lessons expose the mathematical structure being taught, the aim being that students can do the maths without recourse to the representation	Pathway 5 - Measurement. Area 1. LO: I understand what area is and I can begin to calculate the area of shapes. 2. LO: I can calculate area by counting squares. 3. LO: I can expand the area of a shape. 4. LO: I can compare the area of rectilinear shapes.	Area Product Cm squared Length Width

Activity

1. Children are introduced to area for the first time. They understand that area is the amount space is taken up by a 2D shape or surface. Children investigate different shapes that can be made with sets of sticky notes. They should be encouraged to see that the same number of sticky notes can make different shapes but they cover the same amount of surface. We call this the area of a shape.
Broaden- When might you need to work out the area of shapes in real life?
2. Once children understand that area is measured in squares, they use the strategy of counting the number of squares in a shape to measure and compare the areas of rectilinear shapes. They explore the most efficient method of counting squares and link this to their understanding of squares and rectangles. Extend- Is there a quicker way to calculate the area of a shape rather than counting all the squares?
3. Children learn that a rectilinear shape is a shape that has only straight sides and right angles. They explore the idea that rectilinear shapes need to touch at the sides and not just at the corners. Children may notice that a rectilinear shape looks like two rectangles joined together, but should be careful not to calculate the area as two rectangles added together, as this will sometimes include an overlap. Children should work systematically to find all the different rectilinear shapes using a given number of squares by moving one square at a time, before moving on to drawing their own shapes with a given area. Challenge- Can a quadrilateral shape have an odd area? Why? 4. Children compare the area of rectilinear shapes where the same size square has been used. Children will be able to use < and

Year 4-Aut 2 Maths - Multiplication and Division: 6 weeks

NC PoS

Pupils should be taught to: recall multiplication and division facts for multiplication tables up to 12×12, use place value known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers, recognise and use factor pairs and commutativity in mental calculations, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Key Concepts Link

Adopting the mastery approach,
teachers will spend longe r on topics in order to embed understanding and develop rich connections across topics

Fluency

Quick and efficient recall
of facts and procedures and the flexibility to move between different contexts and representations of mathematics

The ability to calculate both mentally and in written form lies at the heart of Mathematics and continued revisiting and consolidation of these skills is essential In order to commit them to long term memory, including the ability to rapidly recall key facts

Key Competencies

Pathway 3- Number	multiplication and division

multiplication multiply multiple

1. LO: I can apply place value knowledge to known additive and multiplicative number facts. 2. LO: I can multiply by 10 3. LO: I can multiply by 100 . 4. LO: I can divide by 10 .
2. LO: I can divide by 100
3. LO: I can multiply by 1 and 0
4. LO: I can divide by 1 and itself 8. LO: I can multiply by 4 (Teacher to choose times table to work on) 9. LO: I can understand the relationship between the 3 and 6 times table.
5. LO: I can multiply and divide by 6
6. LO: I can solve problems involving the $6 \times$ table.
7. LO: I can multiply and divide by 9 13. LO: I can solve problems involving the 9 times table.
8. LO: I can multiply and divide by 7 15. LO: I can solve problems involving the 7 times table
9. LO: I cam solve problems involving the $11 \times$ table.
10. LO: I can solve problems involving the $12 \times$ table.
11. LO: I can multiply 3 numbers
12. LO: I can recall multiplication and division facts up to 12×12

Activity

1. Children to revisit basic addition facts they know such as $6+6=12$ and relate this to 6 hundreds +6 hundreds $=12$ hundreds. Show children representations such as part whole models, place value counters on a grid and bar models so they can visualise this. Move onto multiplication facts and how we can use the technique of scaling to help us work out problems involving multiplying big numbers together. For example we know 2 $\times 3=6$ so $2 \times 30=60$
Challenge- Can you use this knowledge to alter a recipe for a set amount of people? 2. Children need to be able to visualise and understand making a number ten times bigger and that 'ten times bigger' is the same as 'multiply by 10 ' The language of 'ten lots of' is vital to use in this step. The understanding of the commutative law is essential because children need to see calculations such as 10×3 and 3×10 as equal.
Broaden- Is multiplying by 10 the same as adding a zero?
2. Children build on multiplying by 10 and see links between multiplying by 10 and multiplying by 100 Use place value counters and Base 10 to explore what is happening to the value of the digits in the calculation and encourage children to see a rule so they can begin to move away from concrete representations.
Challenge- Is multiplying by 10 twice the same as multiplying by a hundred?
3. Exploring questions with whole number answers only, children divide by 10 They should use concrete manipulatives and place value charts to see the link between dividing by 10 and the position of the digits before and after the calculation. Using concrete resources, children should begin to understand the relationship between multiplying and dividing by 10 as the inverse of the other
Broaden- Can you just take off the zero when dividing by 10 ? Why?
4. Children divide by 100 with whole number answers. Money and measure is a good real-life context for this, as coins can be used for the concrete stage.
Extend- Can you use dividing by 10 to help you work out how to divide by 100 ?
6 . Children explore the result of multiplying by 1 , using concrete equipment. Linked to this, they look at multiplying by 0 and use concrete equipment and pictorial representations of multiplying by 0
Broaden- What do you notice about the factor pairs and the answers you get?
5. Children learn what happens to a number when you divide it by 1 or by itself. Using concrete and pictorial representations, children demonstrate how both the sharing and grouping structures of division can be used to divide a number by 1 or itself. Use stem sentence to encourage children to see this e.g. 5 grouped into 5 s equals $1(5 \div 5=1) 5$ grouped into 1 s equals $5(5 \div 1=5)$
Challenge- is dividing by 1 the same as dividing by itself?
6. Teachers choose which times table children are struggling with (use baseline assessments on TTRS and weekly times table check to influence this.) Recap the sequences of this times table and start to problem solve with these learnt facts.

Year 4- Spr 1 Maths - Measurement and Number:

Week 4-5 Length and Perimeter

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activity
Pupils should be taught to: recognise and show, using diagrams, families of common equivalent fractions, count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole	Representations used in lessons expose the mathematical structure being taught, the aim being that students can do the maths without recourse to the representation. Adopting the mastery approach, teachers will spend longer on topics in order to embed understanding and develop rich connections across topics Gaps in learning will be identified and addressed quickly when they prevent a pupil from tackling more complex mathematical concepts	Pathway 5: MeasurementLength Pathway 4: Number Fractions Perimeter: 13. LO: I can convert between metres and kilometres. 14. I can calculate perimeter by counting squares. 15. I can calculate the perimeter of rectilinear shapes. 16 and 17 . I can calculate the perimeter of rectilinear shapes with missing lengths. 18. LO: I can calculate the perimeter of regular polygons. 19. LO: I can calculate the perimeter of irregular polygons.	Metres Kilometres Unit of length Length Width Perimeter Regular polygon Irregular polygon	13. In previous years, children measured lengths using metres (m) and centimetres (cm). In this small step, children are introduced to kilometres and the abbreviation "km". Children should understand that kilometres are greater than metres and are used to measure greater distances. The focus of this step is to partition measurements into the number of kilometres and metres and make links with addition. Bar models and part-whole models can be used to explore this relationship and to support children with their understanding. The fact that $1 \mathrm{~km}=1,000 \mathrm{~m}$ can be discussed, but conversions are not explicitly covered until the next step. It is useful to make connections with real-life contexts, so that children are aware when different types of units are used. Challenge - are km larger than m? 14. In Year 3, children were introduced to the idea of perimeter by measuring and calculating the perimeter with labelled side lengths. In this small step, children explore perimeter further with a focus on rectilinear shapes, where all sides meet at right angles. These rectilinear shapes will be drawn on squared grids, mainly centimetre squared grids. Encourage children to label the lengths of the sides if needed, and to mark off each side as they add the lengths together. Looking at a variety of shapes enables children to compare their perimeters. They also explore drawing different shapes with a specified perimeter. They continue to consider rectilinear shapes only and do not look at diagonal lengths. Extend - what happens when we have half squares? 15. This small step continues to build children's understanding of perimeter by exploring more rectilinear shapes, both with and without grids. Children know that a rectilinear shape has straight lines that meet at right angles. In this step, it is useful for children to measure the perimeter practically before they find the perimeter of a shape on a grid or from a shape with all side lengths labelled. When calculating, children should mark the sides they have already counted to avoid duplication or omission. Broaden - how can I use my multiplication knowledge to calculate perimeter? 16 and 17. In this small step, children continue to look at rectilinear shapes, focusing on finding missing side lengths. Children explore the relationship between the sides of a rectilinear shape, rather than finding the perimeter. They start by using addition to find the missing side lengths, then using subtraction and finally using both operations to find more than one missing side length. Part-whole models may be useful here. Children may find it helpful

YEAR 5

YEAR 5 Overview

Yearly overview
The yearly overview provides suggested timings for each block of learning, which can be adapted to suit different term dates or other requirements.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & \frac{c}{E} \\ & \frac{5}{2} \\ & \frac{2}{4} \end{aligned}$	Number Place value			Number Addit and subtra	on ction	Number Multiplication and division \mathbf{A}			Number Fractions A			
$\begin{aligned} & \text { 은 } \\ & \text { 후 } \end{aligned}$	Number Multiplication and division B			Number Fracti	ons B	Number Decimals and percentages			Measurement Perimeter and area		Statistics	
$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{E} \\ & \text { En } \end{aligned}$	Geometry Shape			Geometry Position and direction		Number Decimals				Measurement Converting units		

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities
Number and place value	Pupils should be taught to: - read, write, order and compare numbers to at least 1000000 and determine the value of each digit - count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 - solve number problems and practical problems that involve all of the above - read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	Year 4 diagnostic assessment- week 3. White Rose Hub Initial Assessment LO: to investigate Roman numerals to 1000 LO: to investigate numbers to 10,000 LO: to investigate numbers to 100,000 LO: to investigate numbers to $1,000,000$ LO: to read and write numbers to $1,000,000$ LO: to count forwards and backwards using powers of ten LO: to find 10,100 and 1000 more or less than a number LO: to find 10,000 and 100,000 more or less than a number LO: to partition numbers to 1,000,000 LO: to solve problems involving number lines to 1,000,000 LO: to compare and order numbers to 100,000 LO: to compare and order numbers to 1,000,000 LO: to round to the nearest 10, 100 or 1000 LO: to round within 100,000 LO: to round within $1,000,000$ White Rose Hub End of Block Assessment Arithmetic Focuses: Division of two-digit numbers by 10 or 100. Addition and subtraction of fractions with the same denominator. Understanding a formal written method for subtraction with	Consecutive Descending order Digit Difference Greater than Integer Less than Ordinal number Place value Roman numerals Rounding Squared Ones Tens Hundreds Thousands Ten thousands Hundred thousands Million Numeral Compare Partition Order Strategy Representation Power of 10 Exchange Negative Numbers Estimate Approximate	Children to use manipulatives and pictorial representations to read and write numbers. Use counters to make numbers on a place value chart. Give children number cards with a selection of numbers up to 1,000,000 spread out on their table. Ask them to locate a particular number and read it. Ask children to write given numbers on whiteboards. Count on a 100 square in powers of 10 for a given number. Try without the number square. Provide opportunities for children to consider place value in different contexts, e.g. money. Use place value sliders to show numbers and read them before writing them. Identify negative numbers in real life. Count forwards and backwards through zero with physical number lines and ask children to count on or back a certain amount. Round numbers in real life, round to nearest 10 and 100 first, reinforcing the value of each digit in the number and which digits will change/stay the same. Teach children Roman numerals to 1000 and show them years written in Roman numerals. Look for patterns in the Roman numerals. Give children lollipop sticks and give them time to make the Roman numeral when a number is given.

Year 5 - Aut 1 Maths Context: Addition and subtraction

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities

Year 5-Aut 1 Maths Context: Multiplication and division

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities
Multiplication and division	Pathway 3 5NF-1-Secure fluency in multiplication table facts, and corresponding division facts, through continued practice. 5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size. 5MD- 2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors. 5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method. 5MD-4 Divide a number with up to 4 digits by a one-digit number using a formal written method, and interpret remainders appropriately for the context.	Start and continue in Autumn 2 White Rose Hub Initial Assessment LO: to investigate multiples of given numbers LO: to find common multiples of two numbers LO: to investigate factors of a given number LO: to find common factors of a given number LO: to investigate prime numbers LO: to investigate square numbers LO: to investigate cubed numbers LO: to multiply by $\mathbf{1 0 , 1 0 0}$ and 1000 LO: to divide by 10, 100 and 1000 LO: to count in and use multiples of 10, 100 and 1000 White Rose Hub End of Block Assessment Arithmetic Focuses: Division with remainders	Prime number Composite number Square number Cube number Square Cube Inverse Operation Multiply Divide Multiple Factor Prime Factor	Assessment- WRH entry and exit assessment. Begin with multiplication facts that the children know and discuss how these can be used to help to find other facts. Use inverse pyramids and triangles to see the link between multiplication and division. Divide by 10 and 100 and see real life examples of where this might need to be done. Then link dividing by 10 to one tenth, use fraction parts to show one tenth in relation to a whole. Do the same with one hundredth. Find factors and multiples of numbers and move onto common factors and multiples. Find products of two or more factors and find common factors. Introduce the written methods for multiplication and division and work through starting with 4×1 and 4 divided by 1 digit and then move onto 2 digits. Use division strategies that we have been learning in arithmetic starters in class to recap remainders and children to do this independently.

Year 5- Aut 2 Maths Context: Multiplication and division

\section*{| NC PoS |
| :--- |
| $\begin{array}{c}\text { Number: Multiplication } \\ \text { and division. }\end{array}$ |}

Pathway 3

5NF-1- Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.

5MD- 1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.

5MD- 2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.

5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method.

5MD-4 Divide a number with up to 4 digits by a one-digit number using a formal written method,
and interpret remainders appropriately for the context.

Key Concepts Link

Sequence steps:

Topics will be broken down into manageable steps that build on a sequence of
learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.

Adopting the mastery approach:

Embedding understanding and develop
rich connections across topics.

Calculating both mentally and in written form - revisiting topics to consolidate understanding.

Interleaved learning

Encouraging pupils to successfully commit previous learning into their long term memory.

Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures.

CPA Approach.
Subject vocabulary knowledge and use.

Key Competencies

Mini WRM assessment entry.
LO: to analyse the link between multiplication and division facts. LO: to multiply and divide numbers by 10 and 100 .
LO: to explain how dividing by 10 is the same as finding one tenth. LO: to explain how dividing by 100 is the same as finding one hundredth. LO: to find factors and multiples of positive numbers
LO: to find common factors and common multiples of a given number.
LO: to express a given number as a product of 2 or 3 factors.
LO: to multiply any whole number by a one digit number.
LO: to use a formal written method to multiply a number with up to 4 digits by a one digit number. LO: to divide a number with up to 4 digits by a 1 digit number using a formal written method.
LO: to use a written method for division and interpret remainders effectively.
Mini WRM assessment exit.
Vocabulary
multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally

Activity

Assessment- WRH entry and exit assessment.
Begin with multiplication facts that the children know and discuss how these can be used to help to find other facts. Use inverse pyramids and triangles to see the link between multiplication and division. Divide by 10 and 100 and see real life examples of where this might need to be done. Then link dividing by 10 to one tenth, use fraction parts to show one tenth in relation to a whole. Do the same with one hundredth. Find factors and multiples of numbers and move onto common factors and multiples. Find products of two or more factors and find common factors. Introduce the written methods for multiplication and division and work through starting with 4×1 and 4 divided by 1 digit and then move onto 2 digits. Use division strategies that we have been learning in arithmetic starters in class to recap remainders and children to do this independently.

| NC | Key Concepts Link | Key Competencies | Vocabulary |
| :--- | :--- | :--- | :--- | :--- |
| PoS | | | |

Year 5-Spr 1 Maths

Context: Multiplication and division B

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities

Sequence steps:

Topics will be broken down into
manageable steps that build on a sequence of learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.

Adopting the mastery approach:

Embedding understanding and develop rich connections across topics.

Calculating both mentally and in written
form - revisiting topics to consolidate understanding.

Interleaved learning

Encouraging pupils to successfully commit previous learning into their long term memory.

Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures.

CPA Approach.

Subject vocabulary knowledge and use.

LO: to multiply up to a 4 digit number by a 1 digit number

LO: to multiply a 2 digit number by a 2 digit number using the area model

LO: to multiply a 2 digit number by a 2 digit number

LO: to multiply a 3 and 4 digit number by a 2 digit number

LO: to solve problems involving multiplication

LO: to know the steps for short division

LO: to divide a 4 digit number by 1 digit

LO: to divide with remainders

Build on their learning of multiplying by a 1-digit number and begin to multiply by a 2-digit number. Children use the area model to multiply a 2-digit number by another 2-digit number before moving on to the formal written method in the next step. Linking the use of the area model to children's prior knowledge of arrays helps children to understand the model. They see that to find the total product, they can break the calculation down, find other products and then add them together. children progress from the area model to using the formal written method for multiplication.
Encourage children to recognise the links between the area model and the formal method, noting where the subtotals in the formal method match the totals of parts of the area model. Children can check their answers by rounding to find estimates, for example 42×32 is about $40 \times 30=1,200$, so the actual answer should be close to this. Children build on their understanding from the previous two steps to multiply a 4 -digit number by a 2 -digit number.
Children need to be confident with multiplying 2-digit numbers by both 2 - and 3-digit numbers before moving on to this step. As they are now working with greater numbers, it is important that children understand the steps taken when using the long multiplication
method. Following the introduction of formal short division in the previous step, in this small step children move on to dividing a 4-digit number by a 1-digit number.
Place value counters continue to be used to represent the calculations alongside the formal written method, so that children can visualise how one relates to the other. Children begin with divisions that have no exchanges and then

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities
Pathway 4 fractions	Sequence steps: Topics will be broken down into manageable steps that build on a sequence of learning where mathematical concepts are connected in order to ensure there is a real depth of understanding. Adopting the mastery approach: Embedding understanding and develop rich connections across topics. Calculating both mentally and in written form - revisiting topics to consolidate understanding. Interleaved learning Encouraging pupils to successfully commit previous learning into their long term memory. Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures. CPA Approach. Subject vocabulary knowledge and use.	LO: to multiply a unit fraction by an integer LO: to multiply a non-unit fraction by an integer LO: to multiply a mixed number by an integer LO: to calculate a fraction of a quantity LO: to find a fraction of an amount LO: to use given fractions to find the whole LO: to use fractions as operators	Equivalent Fraction Tenths Hundredths Convert Mixed number Improper fraction Mathemati cal statement Mixed number Denominat or Numerator Decimal	Children encounter multiplication number sentences with fractions, multiplying unit fractions by an integer. Make links to multiplication as repeated addition. Bar models are a useful representation and can show the calculations in multiple or single bars. When answers are greater than 1, encourage children to write their answers as a mixed number. They may also find a number line useful. Children explore a range of methods to complete the calculations and discuss the efficiency of each. To build understanding, initially calculations should not involve converting improper fractions to mixed numbers. Once children are secure in using the methods, they can explore questions where in the answer, the fractional part of the calculation is greater than 1 and needs converting to a mixed number before combining the totals.

YEAR 6

YEAR 6 Overview

The yearly overview provides suggested timings for each block of learning, which can be adapted to suit different term dates or other requirements.

Year 6 -Aut I Maths Week I, 2 \& 3

NC PoS
 place value

Pupils should be taught to:

- read, write, order
and compare
numbers up to 10
000000 and
determine the value
of each digit
round any whole
number to a
required degree of accuracy
- use negative numbers in context, and calculate intervals across zero
- solve number and practical problems that involve all of
the above

Key Concepts Link
Pathway Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are

Adopling the mastery approach: Embedding understanding and develop rich connections across topics.

Calculating both mentally and in written form - revisiting topics to consolidate understanding.

Interleaved learning
Encouraging pupils to successsully commit previous learning into their long term memory.

Solve problems and complete reasoning

 activities of a more complex nature using knowledge of facts, concepts and procedures.
CPA Approach.

Subject vocabulary knowledge and use.

Read, write, order and compare numbers up to $10,000,000$ and determine the value of each digit: Recoogise the place value of each digit in numbers up to 10 milion, including decimal fractions, and compose and decompose numbers up to 10 million using standard and nonstandard partilioning (See RTPC 6NPV-2)

Understand the relationship between powers of 10 grom I hundredth to 10 million, and use this to make a given number $10,100,1,000$, I tenth, I hundredth or I housandth times the size (multiply and divide by 10,100 and 1,000). (See RTPC 6NPV-I)
Divide powers of 10 , from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts. See RTPC 6NPV-4

Round any whole number to arequired degree of accuracy. Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropride, including in contexts. (See RTPC 6NPV-3)

Use negative numbers in context, and calculate intervals across zero
Solve number and practical problems that involve all of the abve)
Main lesson Learning Outcomes:
LO: I can partition numbers and know the value of each digit up to 1 million
LO: I can apply my knowledge oo place value to solving questions extending to 10 million
L.O: I can compare and order integers and decimals up to ten million
L.O: I can apply my ability to mulliply and divide integers and decimals by 10,100 and 1000 by explaining relationships between numbers
L.O: I can discuss and apply my rounding skills to any number and any degree of accuracy
L.O: I can apply my understanding of rounding to solve problems

LO: I can apply my understanding of negative numbers to make comparisons and justify my answers L.O: I can evaluate my understanding of negative numbers by solving problems in an everyday context

Complete assessment:

White Rose Hub mini assessment-- Place Value Y6

Vocabulary	Activity	
Consecutive	Complete baseline Y5 objective test for all L0 coverage from Y5 to then analyse	

Negative
Zero
Temperature
Power of
Descending order
Digit
Difference
Greater than
Integer
Less than
Ordinal number
Place value
Roman numerals
Rounding
Squared
Column method
Subtraction
Addition
Exchange
Complete baseline Y5 objective test for all LO coverage from Y5 to then analyse results and plan for class abilities. Use of White Rose and Star assessment material to identify areas/starling point for class - PLACE VALUE Y5 assessment task and use of $Y 4$ place value task to begin.
Continual reinforcement of learning using concrete apparatus like place value charts and White Rose material to model, discuss and teach place value.
Children think about when place value important, e.g money and complete a check in to establish the child's starting points in the subject.
Base ten, part whole, partitioning shall be used to teach the value of each segment of a given number.
Number lines to be used to teach rounding and rules for up and down reinforced using MyMaths teaching material to support main teaching. Use of White Rose Hub material and teaching sequence for lesson content Encourage use of highlighters to identify key information and chn can generate their own rounding scenario and problem for a peer to solve,
Children will explore with whiteboards, with partners and independently the use of the column method. Regular prompts to check calculation strategies. Reference to the White Rose visual prompts on display.
Children to apply their methods to written sums to see accuracy and confidence with the methods. Children will apply these strategies when solving problems in context. Some of these questions are also in context to make work more relevant. Refer to online White Rose ppts referenced in key knowledge with use of challenge/ ready to progress material where necessary.

Friday - timetable and arithmelic focus to explore use of written strategies for 2 mark questions.
(Challenge - use of ready to progress material, Nrich tasks and reasoning activities to embed and extend LOs in each lesson)
(Support chn - pictorial, abstract and concreate representations of each LO to support and scaffold learning where necessary) $\frac{\text { Primary }}{481}$

NC PoS
$\frac{\text { Number }- \text { addition, subbraction, }}{\text { multiplication and division }}$

Pupils should be taught to:

- mulliply mulli-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long mullipicication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- perform mental calculations including with mixed operations and large numbers
- identify common factors, common mulliples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subbraction mulli-step problems in contexts, deciding which operations and methods to use and why

Key Concepts Link
 Pathway 2-addition, subtraction. mulliplication and division

Sequence steps:

Topics will be broken down into manageable steps that build on a sequence of steps in
learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.

Adopling the mastery approach: Embedding understanding and develop rich connections across topics.

Calculaling both mentally and in written form - revisiting topics to consolidate understanding.

Interleaved learning

Encouraging pupils to successuully commit previous learning into their long term memory.

Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures.

CPA Approach.
Subject vocabulary knowledge and use.

Key Competencies	Vocabulary

LO: I can apply a strategy to add two 4-digit numbers using one or more exchange in column method.
LO: I can apply a calculation strategy to subtract two 4-digit numbers using more than one exchange.
L.O: I can solve calculations problems using an addition and subbraction method for number
LO: I can identify and investigate common factors and mulliples to solve problems
L.O: I can apply my knowledge of rules of divisibility and prime numbers to solve problems
L.O: To investigate methods for mulliplication including formal written method for 4 digits by 2 digit whole numbers.
L.O: To apply a written strategy for division up to 4 digits by 2 digits and interpert remainders as whole numbers
L.O: To apply my learning to solve mulli-step problems including all 4 operations
L 0 : I can justify my answers by using the inverse operations to check the answers my calculations.
LO: I can solve addition and subbraction mulli-step problems in contexts, deciding which operations and methods to use and why. White Rose Hub mini assessment - on topic
(Challenge - use of ready to progress material, Nrich tasks and reasoning activities to embed and extend LO s in each lesson)
(Support chn - pictorial, abstract and concreate representations of each LO to support and scaffold learning where necessary)

Activity

Children complete the White Rose Maths baseline test Y 5 at the beginning of the unit to establish a starting point to the unit.
Children use the formal column method for numbers with the same and different numbers of digits. They also practise mental stractegies with both large and small numbers, using their understanding of place value. Children solve mulli-step problems, choosing which operations and methods to use based on the cortext of the problem and the types of numbers involved. The use of concrete manipulatives can support children's understanding, especially where exchanges are required.

Children are familiar with the idea of multiples of numbers from earlier study of limes-tables. Building on this knowledge, they now find common mulliples of two or more numbers. As with factors, arrays and other representations may still be used as support, but knowledge of times-tables is key. Some mulliples can be recognised using the rules of divisibility, which are explored in detail in the next small step. Encourage children to work systematically to find lists of multiples rather than just finding the product of the given numbers, as Hhis may miss some mulliples. Children do not need to be able to formally identify the lowest common multiple of two or more numbers, but can be challenged to consider the first common multiple of a pair of numbers.

Building on their learning from previous years, children use long mullipication to multiply numbers with up to four digits by 2-digit numbers. Children should already be aware that mulliplication is commutative, so answers to calculations such as $56 \times 1,234$ can be found by rewriting as $1,234 \times 56$ and using the standard format. Children also solve word problems and/or mulli-step problems. This will be revisited in the next step, where allernative strategies are also explored, for example for mulliplying by 9 or 99 Children who require addilional support may bene fit from revising mullipication of 2 - or 3 -digit numbers by a single digit before moving on to mulliplication by a 2-digit number.

Children to use BIDMAS/BODMAS as a re ference and solve mixed order calcullations. Children will use whileboards to remind themselves of the strategies and checking process.
Board modelling by teacher will help remind children of addition and subtraction, stressing the inclusion checking by inverse.
Chn to complete arithmetic strategies - all 4 operations and then applying to written problems. Encourage children to use a highlighter to identify key parts of the question as we would in sets. Children reasoning their understanding using spot the mistake, convince me and true/false activities.

For word problems, children use the mnemonic RUCSAC to organise their thinking and establishing the starting points for their problem solving. Teacher modelling and paired work to show how to establish which method to use, what order and how to check with inverse

Year 6- Aut I Maths - Diagnostic outcome intervention

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity ${ }_{8}^{888}$
Number \& place value	Pathway	L.O: I can apply a written method for subbraction to solve problems	Conseculive	$\underline{101}$
	Sequence steps:	L.O: I can reflect a given shape recording its coordinates	Negative	Word problems involving column subbraction with missing digits. Then apply into worded problems where
Fractions	Topics will be broken down into	L.O: I can calculate equivalent fractions and order them appropriately	Zero	subtraction is needed.
Fractions	manageable steps that build on a	L.O: I can apply my understanding of equivalences to add and subbract fractions	Temperature	L. 02
Data handing/ statistics	sequence of steps in	L.O: I can multiply fractions	Power or	Shapes are reflected and associited co-ordinates are recorded on the grid. (x, y)
	learning where mathematical concepts are connected in order to	L.O: I can identify mulliples L.O. I can round decimals	Power of Descending order	Using a 2 quadrant grid and extend to 4 for more able. L03
Mulliplication and division	ensure there is a real depth of	L.O: I can multiply and divide numbers by 10,100 and 1000	Digit	Children to give a collection of fractions to calculate their equivalents, following this children are then taught
	understanding.	L.O: I can convert between fractions, Decimals and Percentages LO. I can arder decimals according to size	Difference	to order them - ascending and descending.
		L.O: I can interpret and calculate dif ferences in data presented in a line graph	Greater than	L. 04
	Adopling the mastery approach:	differences aresen in a line graph L.O: I can solve 2 step problems involving addition and subbraction	Integer	Children calculate fraction equivalences and use them to add and sublract fractions in arithmetic style
Decimals	Embedding understanding and develop rich connections across	L.O: I can calculdate missing angles around a point	Less than	question format. Include mixed fractions to extend where appropriate. L. 05
	develop Trich comections across topics.	L.O: I can identify 3D shapes	Ordinal number Place value	Children apply their understanding to multiply fractions. Present problems visually as well as written sums. Extend - children calculate simpligied form.
Percentages	Calculating both mentally and		Roman numerals	L06
Addition and	in wrilten form - revisiling		Rounding	Children need to identify mulliples of a given number. To extend, children are given sets of numbers and must
Sublraction - problems	topics to consolidate understanding.		Squared	identify what number they are mulliples of. $\text { L. } 07$
			Column method	Children apply rules of rounding to decimals (Id.p) and whole number ($10,100,1000$)
Angles	Interleaved learning		Subtraction	L. 08 (${ }^{\text {c }}$
	Encouraging pupils		Addition	Children learn rules for rounding and apply to given numbers including decimals and numbers contex!
3D Shape	to success fully commit previous		Exchange	L09
	learning into their long term memory.			Children can recognize the relationship between FDPs and use to then calculate them. Present children with written problems to challenge and apply their understanding.
				LOIO
	Solve problems and complete			Children can recognise place value in decimals in order to then order them accordingly.
	reasoning activities of a more			LOll
	complex nature, using knowledge			Children interpret line graphs looking of the information displayed, analyse what is shown and calculate the
	${ }^{\circ}{ }^{\circ}$ facts, concepts and procedures.			differences. Word problems given to support the skills. LOI2
	CPA Approach.			Children identify the key information needed to solve a problem and solve using a written method for + and -. LO13
	Subject vocabulary knowledge and use.			Children must recognise that 360 degrees is around a point and use this knowledge to calculate missing angles. L014
				Children identify 3d shapes based upon their known properties.

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity

Children should be

 taught to: recall and use equivalences between simple fractions, decimals and percentages, including in different contextsKey Concepts Link

Pathway 9 - Percentages

Sequence steps:
Topics will be broken down into
manageable steps that build on a sequence of steps in
learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.

Adopling the mastery approach:

 Embedding understanding and develop rich connections across topics.
Calculating both mentally and in

 written form - revisiling topics to consolidate understanding.
Interleaved learning

Encouraging pupils to success fully commil previous learning into their long term memory.

Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures.

CPA Approach.

Subject vocabulary knowledge and use.

\section*{| Key Competencies | Vocabulary | Activity |
| :--- | :--- | :--- |}

Pathway 9 Percentages	Decimal	Retrieval task

(N_{0} RTP)

- Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal
- Solve problems involving the calculation of percentages Ifor example, of measures and such as 15% of 360$]$ and the use of percentages for comparison
- Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.
L.O: I can calculate equivalent fractions, decimals and percentages
L.O: I can order and compare FDP L.O: I can calculate percentages of amounts
L.O: I can solve percentage problems
L.O: I can apply my skills to arithmetic questions
SPRING TEST 2

Retrieval lask

Children are introduced to 'per cent' for the first time and will understand that 'per cent' relates to number of parts per hundred'. They will explore this through different representations which show different parts of a hundred. Children will use number of parts per hundred' alongside the $\%$ symbol.
Refer to White Rose teaching PPTs saved in shared area Y6, MATHS, SPRING I.
Compare
Ascending
Descending
Relationship Tenths, hundredths, thousands
Rounding
Percentage
Fraction
6P- PPTI and resources. I Children will be familiar with converting some common fractions from their work. They learn to convert fractions to equivalent fractions where the denominator is 100 in order to find the percentage equivalent:
6P - PPT 2 Children apply their knowledge of common equivalent fractions and decimals to find the equivalent percentage. A common misconception is that 0.1 is equivalent to 1%. Use of diagrams to support understanding the difference between tenths and hundredths and their equivalent percentages.
6P - PPT 3 Children convert between fractions, decimals and percentages to enable them to order and compare them. Encourage them to convert each number to the same form so that they can be more easily ordered and compared. Once the children have compared the numbers, they will need to put them back into the original form to answer the question. Use of differentiated test questions from SATs papers and TA/ resources support for LA to visualise the relationships/ equivalences between all three forms.

6P - PPT 4 Children use known fractional equivalences to find percentages of amounts. Bar models and other visual representations may be useful in supporting this e.g. $25 \%=14$ so we divide into 4 equal parts. In this step, we focus on 50%, $25 \%, 10 \%$ and 1% only. Children build on the last step by finding mulliples of 10% and other known percentages. They explore different methods of finding certain percentages e.g. Finding 20% by dividing by 10 and mulliplying by 2 or by dividing by 5 . They also explore finding 5% by finding half of 10%. Using these methods, children build up to find percentages such as 35%.
6P- PPT 5 Children use their understanding of percentages to find the missing whole or a missing percentage when the other values are given. They may find it useful to draw a bar model to help them see the relationship between the given percentage or amount and the whole. It is important that children see that there may be more than one way to solve a problem and that some methods are more efficient than others $Q I_{f}$ we know the value and percentage, can we find the whole? MyMaths unit set for chn to consolidate and review learning points where needed.
Mini WRM assessment exit.

Year 6- Aut 2 Maths Context: Fractions around Christmas maths tasks

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity $\quad \pi /$ Primary Scho
Fractions: calculations - add and subbract fractions with different - denominators and mixed numbers - mulliply simple pairs of proper fractions - divide proper fractions by whole - associate a fraction with division and calculate decimal fraction equivalents	Pathway 4 - Fractions Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding. Adopting the mastery approach: Embedding understanding and develop rich connections across topics. Calculating both mentally and in written form - revisiting topics to consolidate understanding. Interleaved learning Encouraging pupils to successfully commit previous learning into their long term memory. Solve problems and complete reasoning activilies of a more complex nature, using knowledge of facts, concepts and procedures. CPA Approach. Subject vocabulary knowledge and use.	- 6F-2: Autumn 3 Fractions - Add fractions - Subtract fractions - Mixed addition and subtraction - Four rules with fractions L0: I can mulliply simple pairs of proper fractions, wriling the answer in its simplest form [for example $14 \times 12=18$] L.O: I can divide proper fractions by whole numbers [for example $13 \div 2=16$] L.O: I can associate a fraction with division and calculate decimal fraction equivalents L.O: I can recall and use equivalences between fractions, decimals and percentages including different contexts. L.O: I can reflect upon my understanding of the fraction topic White Rose Maths Hub assessment	Fraction Proper/ improper fraction Equivalent fraction Mixed number Numerator Denominator Reduced to, cancel Equal part Equal grouping Equal sharing Parts of a whole Quarter, two quarters Half, two halves Sixths, sevenths, eigths, tenths Decimal, decimal fraction Simplify Compare Order	REFER TO 6F-2 and 6F3 ppt Children apply what their understanding of equivalence and fraction value to mulliply fractions and mixed numbers by integers. Use diagrams to identify the link between mulliplication and repeated addition. Use models and manipulatives to show that the numerator is mulliplied and the denominator stays the same. Teacher models how to mulliply with mixed numbers, showing the children how to partition into wholes and parts to mulliply more efficiently. They then compare the strategy with mulliplying improper fractions. L/A - supported with concrete models and visual representations to support them with mulliplying. Use MyMaths sessions to support $L A$ with visualising (interlinking cubes) and use of fraction bricks to see the equivalences between fractions and relationship when converting improper to mixed fractions. Encourage them to explore creating models then recording in writing what the process is. E.G. $3 / 2=11 / 2$. Refer to 6F2 to model process of converting and ordering fractions with different denominations on a number line. Show various representations of fractions on a number line with missing numerators and denominators for children to apply their understanding of conversion to then order.

Year 6- Aut 2- Maths Diagnostic outcome intervention

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity
Number \& place value	Pathway Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.	L.O: I can apply a written method for subbraction to solve problems L.O: I can reflect a given shape recording its coordinates L.O: I can calculate equivalent fractions and order them appropriately L.O: I can apply my understanding of equivalences to add and subbract fractions L.O: I can mulliply fractions L.O: I can identify multiples L.O. I can round decimals L.O: I can mulliply and divide numbers by 10,100 and 1000 L.O: I can convert between fractions, Decimals and Percentages L.O: I can order decimals according to size L.O: I can interpret and calculate differences in data presented in a line graph L.O: I can solve 2 step problems involving addition and subbraction L.O: I can calculate missing angles around a point L.O: I can identify 3 D shapes	Conseculive Negative Zero Temperature Power of Descending order Digit Difference Greater than Integer Less than Ordinal number Place value Roman numerals Rounding Squared Column method Subtraction Addilion Exchange	$\underline{\mathrm{LOI}}$ Word problems involving column subtraction with missing digits. Then apply into worded problems w
Fractions				subtraction is needed.
				L. 02
				Shapes are reflected and associated co-ordinates are recorded on the grid. (x, y)
Data handing/ statistics				Using a 2 quadrant grid and extend to 4 for more able. L03
Mulliplication and division				Children to give a collection of fractions to calculate their equivalents, following this children are then taught
				to order them - ascending and descending.
				L. 04
	Adopling the mastery approach:			Children calculote fraction equivalences and use them to add and subbract fractions in arithmelic style
Decimals	Embedding understanding and develop rich connections across			question format: Include mixed fractions to exiend where appropriate. L. 05
	topics.			Children apply their understanding to mulliply fractions. Present problems visually as well as writen sums.
Percentages				Exiend - children calculate simplified form.
	Calculating both mentally and			L06
Addition and Sublraction - problems	in wrilten form - revisiling			Children need to identify mulliples of a given number. To extend, children are given sets of numbers and must
	topics to consolidate			identify what number they are mulliples of.
	understanding.			L. 07
Angles				Children apply rules of rounding to decimals (ldp) and whole number ($10,100,1000$)
	Interleaved learning			
	Encouraging pupils			Children learn rules for rounding and apply to given numbers including decimals and numbers context.
3D Shape	to success fully commit previous			L09
	Learning into their long term memory.			Children can recognize the relationship between FDPs and use to then calculate them. Present children with written problems to challenge and apply their understanding.
				LOOO
	Solve problems and complete			Children can recognise place value in decimals in order to then order them accordingly.
	reasoning activilies of a more			LOll
	complex nature, using knowledge			Children interpet line graphs looking of the in formation displayed, analyse what is shown and calculate the
	of facts, concepts and procedures.			differences. Word problems given to support the skills. LOI2
	CPA Approach.			Children identify the key information needed to solve a problem and solve using a written method for + and - . LOI3
	Subject vocabulary knowledge			Children must recognise that 360 degrees is around a point and use this knowledge to calculate missing angles.
	and use.			L014
				Children identify 3d shapes based upon their known properties.

Year 6-Aut 2 Maths Context: Fractions

Key Competencies	
- 6F-I: Use common factors to simplify fractions; use common	

Vocabulary Activit
multiples to express fractions in the same denomination.

- 6F-2:Compare and order fractions, including fractions) I. Express fractions in a common denomination and use this to compare fractions that are similar in value
- 6F-3: Compare fractions with different denominators, including fractions greater than 1 , using reasoning, and choose between reasoning and common denomination as a comparison strategy

LO: I can calculate common factors to simplify fractions
LO: I can apply common mulliples to find equivalent fractions and common factors to simplify fractions

LO: I can compare and order fractions, including improper factions

LO: I can add and subtract fractions with different denominations and mixed numbers
1.0: To apply my arithmetic skills to assessment questions (Friday arithmetic lesson)

Fraction Proper/ improper fraction Equivalent fraction Mixed number Numerator Denominator Reduced to, cancel
Equal part Equal grouping Equal sharing Parts of a whole Quarter, two quarters Half, two halves Sixths, sevenths, eigths, tenths
Decimal, decimal fraction Simplify Compare Order

Retrieval - ask children to identify what they know about fractions. Ask if they can recall any real life scenarios when they might need to use fractions? What methods do they know related to fraction calculations? Model a few examples to assess understanding of children - are they ready to move to abstract reference of fractions or pictorial needed to support.
REFER TO 6F-I ppt - Children use their understanding of the HCF to simplify fraction, building upon their knowledge of equivalent fractions Children apply their understanding when calculating with fractions and simplifying their answers accordingly. Encourage children to use pictorial representations to support their simplifications - fraction wall to be provided as a reference in books and on display on class working wall. Children convert improper fractions to mixed numbers for the first time. Children will see visual representations of the process to allow them to make connections between the concept happening and the abstract. L/A - supported with concrete models (interlinking cubes) and use of fraction bricks to see the equivalences between fractions and relationship when converting improper to mixed fractions. Encourage them to explore creating models then recording in writing what the process is.
E.G, $3 / 2=11 / 2$.

Refer to 6F2 to model process of converting and ordering fractions with different denominations on a number line. Show various representations of fractions on a number line with missing numerators and denominators for children to apply their understanding of conversion to then order. Children apply their knowledge equivalence between fractions to add when they have the same denominations.

MyMaths unit - assigned to class. Tasks include: order and compare fractions Y6, add and subtract fractions Y6. These used alongside teaching.

NC PoS

Key Concepts Link

Pathway 9 - Decimals
Sequence steps. Sequence steps:
Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.

Adopling the mastery approach: Embedding understanding and develop rich connections across topics.

Calculating both mentally and in written form - revisiling topics to consolidate understanding.

Interleaved learning

Encouraging pupils to success fully commit previous learning into their long lerm memory.

Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures.

CPA Approach.
Subject vocabulary knowledge and use.

Key Competencies	Vocabulary	Activily

Retrieval - ask children to identify what they know about decimals. Ask if they can recall any real life scenarios when they might need to use them? What methods do they know related to decimal calculations? Model a few examples to assess understanding of children - are they ready to move to abstract reference of decimals or pictorial needed to support: (place value grids/ counters to be used regularly) REFER T0 6D-I ppt - Children use place value counters and a place value grid to make numbers with up to two decimal places. They read and write decimal numbers and understand the value of each digit. They show their understanding of place value by partitioning decimal numbers in different ways. *REFER to 5D ppt
REFER TO 6D-3-ppt
Children mulliply numbers with up to three decimal places by 10,100 and 1,000 They discover that digits move to the left when they are mulliplying and use zero as a place value holder. The decimal point does not move. Once children are confident in mulliplying by 10,100 and 1,000 , they use these skills to investigate mulliplying by mulliples of these numbers e.g. 2.4×20

Measures

Building on their experiences from earlier years, children recognise, read and write all metric measures for length, mass and capacity. This is the first time they will be introduced to tonnes as a measure for mass. Children need to know that one mile is a greater distance than one kilometer. They learn that 5 miles is approximately equal to 8 km . Using this fact, they solve conversions from miles to kilometres and from kilometres to miles. Children need to know that the symbol " \approx " means "is approximately equal to".
Mini WRM assessment exil.
MyMaths unit - assigned to class. Tasks include:

NC PoS	Key Concepts Link	Key Competencies	Vocabulary	Activity y_{8}^{88}
Children should be taught to: recall and use equivalences between simple fractions, decimals and percentages, including in different contexts	Pathway 9 - Percentages Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding. Adopling the mastery approach: Embedding understanding and develop rich connections across topics. Calculating both mentally and in written form - revisiling topics to consolidate understanding. Interleaved learning Encouraging pupils to successfully commil previous learning into their long	Pathway 9 Percentages (N_{0} RTP) - Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal - Solve problems involving the calculation of percentages Ifor example, of measures and such as 15% of 360] and the use of percentages for comparison - Recall and use equivalences between simple fractions, decimals and percentages including in different contexts. L.O: I can calculate equivalent fractions, decimals and percentages L.O: I can order and compare FDP	Decimal Place value Equivalent Compare Ascending Descending Relationship Tenths, hundredths, thousands Rounding Percentage Fraction	Retrieval task Children are introduced to 'per cent' for the first time and will understand that 'per cent' relates to number of parts per hundred'. They will explore this through different representations which show different parts of a hundred. Children will use 'number of parts per hundred' alongside the $\%$ symbol. Refer to White Rose teaching PPTs saved in shared area Y6, MATHS, SPRING I. Differentiated groups based upon 6AM Maths Autumn data outcomes. 6P- PPTI and resources. I Children will be familiar with converting some common fractions from their work. They learn to convert fractions to equivalent fractions where the denominator is 100 in order to find the percentage equivalent. EXPAND- 6P - PPT 2 Children apply their knowledge of common equivalent fractions and decimals to find the equivalent percentage. A common misconception is that 0.1 is equivalent to 1%. Use of diagrams to support understanding the difference between tenths and hundredths and their equivalent percentages. EXTEND- Identify if the statement is true or false. Explain your reasoning. $\frac{1}{4}=40 \%$

6P - PPT 3 Children convert between fractions, decimals and percentages to enable them to order and compare them. Encourage them to convert each number to the same form so that they can be more easily ordered and compared. Once the children have compared the numbers, they will need to put them back into the original form to answer the question. Use of differentiated test questions from SATs papers and TA/ resources support for LA to visualise the relationships/ equivalences between all three forms.

CHALLENGE-

```
decimals and percentages in ascending
order:
0.02,0.201, 21%,
I/ Identify an error that Alex has made, then
```

Key Concepts Link

Pathway 9 - Decimals

 Sequence steps:Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding.

Adopling the mastery approach: Embedding understanding and develop rich connections across topics.

Calculating both mentally and in written form - revisiling topics to consolidate understanding.

Interleaved learning

Encouraging pupils to success fully commit previous learning into their long term memory.

Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures.

CPA Approach.
Subject vocabulary knowledge and use.

Key Competencies	Vocabulary	Activity

Retrieval - ask children to identify what they know about decimals. Ask if they can recall any real life scenarios when they might need to use them? What methods do they know related to decimal calculations? Model a few examples to assess understanding of children - are they ready to move to abstract reference of decimals or pictorial needed to support. (place value grids/ counters to be used regularly) Differentiated groups based upon Maths Autumn dala outcomes. REFER TO 6D-I ppt - Children use place value counters and a place value grid to make numbers with up to two decimal places. They read and write decimal numbers and understand the value of each digit. They show their understanding of place value by partitioning decimal numbers in different ways. *REFER to 5D ppt REFER TO 6D-3-ppt
Children mulliply numbers with up to three decimal places by 10,100 and 1,000 They discover that digits move to the left when they are multiplying and use zero as a place value holder. The decimal point does not move. Once children are confident in multiplying by 10,100 and 1,000 , they use these skills to investigate multiplying by mulliples of these numbers e.g. 2.4×20

CHALLENGE AND EXPAND-

Measures

Building on their experiences from emin ywuro, umdren recognise, read and write all metric measures for length, mass and capacity. This is the first lime they will be introduced to tonnes as a measure for mass. Children need to know that one mile is a greater distance than one kilometer. They learn that 5 miles is approximately equal to 8 km . Using this fact, they solve conversions from miles to kilometres and from kilometres to miles. Children need to know that the symbol " \approx " means "is approximately equal to". CHALLENGE-
\qquad aversion Worrd Problem Answer

NC PoS	Key Concepts	Key Competencies	Key Vocabulary	Key Activities
Children should be taught to: Recognise that shapes with the same areas can have different perimeters and vice versa recognise when it is possible to use formulae for area and volume of shapes calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}]	Pathway 5 - Measurements Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding. Adopting the mastery approach: Embedding understanding and develop rich connections across topics. Calculating both mentally and in wrilten form - revisiting topics to consolidate understanding. Interleaved learning Encouraging pupils to successfully commit previous learning into their long term memory. Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures. CPA Approach. Subject vocabulary knowledge and use.	L.O: I can investigate relationships between area and perimeter e.g. shapes with the same area can have different perimeters and vice versa. L.O: I can calculate the volume of 3d shapes using a formula where possible L.O: I can calculate the area of parallelograms and triangles. L.0: I can calculate, estimate and make comparisons of the volume of cubes and cuboids Homework MyMaths - area, perimeter and volume tasks set	Decimal Place value Equivalent Compare Ascending Descending Relationship Tenths, hundredths, thousands Rounding Percentage Fraction	Retrieval task - What is area? Perimeter? Can they relate to their use of formulas from previous Algebra unit to record their understanding σ_{f} the two operations. Length and width identified and measures recapped to support chn in their calculations. REFER TO 6APV-I ppt Children will find and draw rectilinear shapes that have the same area. Children will use their knowledge of factors to draw rectangles with different areas. They will make connections between side lengths and factors. What do we need to know in order to work out the area of a shape? Why is it useful to know your times-tables when calculating area? Can you have a square with an area of 48 cm 2 ? Why? EXTEND REFER TO 6APV-2 ppt Children should calculate area and perimeter of rectilinear shapes. They must have the conceptual understanding of the formula for area by linking this to counting squares. Writing and using the formulae for area and perimeter is a good opportunity to link back to the algebra block. Children explore that shapes with the same area can have the same or different perimeters. EXPAND - CONVINCE ME 4. Aimee uses the formula Area $=b \times h \div 2$ to find the area of a triangle. She says, REFER T0 6APV-3 ppt: Children will use their previous knowledge of approximating and estimating to work o \qquad gles by counting. Children will need to physically annotate to avoid repetition when counting the squares. Children will begin to see the link between the area of a triangle and the area of a rectangle or square. They see that a right-angled triangle with the same length and perpendicular height as a rectangle will have an area half the size. Using the link between the area of a rectangle and a triangle, children will learn and use the formula to calculate the area of a triangle. REFER TO 6APV-4 ppt CHALLENGE Children use their knowledge of finding the area of a rectangle to find the area of a parallelogram. Children investigate the link between the area of a rectangle and parallelogram by cutting a parallelogram so that it can be rearranged into a rectangle. This will help them understand why the formula to find the area of parallelograms works.

NC PoS	Key Concepts Link	Key Competencies	Key Vocabular y	Key Activities 4888
Pupils should be taught to: solve problems involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison solve problems involving similar shapes where the scale factor is known or can be found solve problems involving unequal sharing and grouping using knowledge of fractions and mulliples	Pathway 10-Ratio Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order to ensure there is a real depth of understanding. Adopting the mastery approach: Embedding understanding and develop rich connections across topics. Calculating both mentally and in written form - revisiling topics to consolidate understanding. Interleaved learning Encouraging pupils to successfully commil previous learning into their long term memory. Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures. CPA Approach. Subject vocabulary knowledge and use.	L.O: I can divide a quantily in a given ratio (recognising the proportion as a fraction of the whole). L.O: I can identify that a problem can be written as a ratio and solve problems using this relationship. L.O: I can solve problems involving similar shapes where the scale factor is known or can be found.	Decimal Place value Equivalent Compare Ascending Descending Relationship Tenths, hundredths, thousands Rounding Percentage Fraction	REFER TO 6APV-5 ppt Children understand that volume is the amount of solid space something takes up. They look at how volume is different to capacity, as capacity is related to the amount a container can hold. Children could use centimetre cubes to make solid shapes. Through this, they recognise the conservation of volume by building different solids using the same amount of centimetre cubes. Children should understand that volume is the space occupied by a 3-D object. Children will start by counting cubic units $\left(1 \mathrm{~cm}^{3}\right)$ to find the volume of 3D shapes. They will then use cubes to build their own models and describe the volume of the models they make. REFER TO 6APV-6 ppt Children make the link between counting cubes and the formula $(l \times w \times h)$ for calculating the volume of cuboids. They realise that the formula is the same as calculating the area of the base and mulliplying this by the height. Area, Perimeter \& Volume WRM assessment completed. REFER T0 6R-1 ppt - introduction to Ratio. Children will understand that a ratio shows the relationship between two values and can describe how one is related to another. They will start by making simple comparisons between two different quantilies. For example, they may compare the number of boys to girls in the class and write sta 1 . Each class has been collecting reply slips to show how many people plan on attending EXPAND the fair. The information gathered shows that for every two adults attending the fair, there will be 3 children. Write this as a ratio. REFER TO 6R-2 ppt Children often think a ratio $1: 2$ is the same as a fraction of 12 In this step, they use objects and diagrams to compare ratios and fractions.. Children are introduced to the colon notation as the ratio symbol, and continue to link this with the language ' for every..., there are...' They need to read ratios e.g. 3:5 as "three to five". Children understand that the notation relates to the order of parts. be the same as $2: 3$. CHALLENGE REFER TO 6R-3 ppt Children build on their knowledge of ratios and begin to calculate ratios. They answer worded questions in the form of 'jor every... there are ...' and need to be able to find both a part and a whole. They should be encouraged to draw bar models to represent their problems, and clearly label the information they have been given and what they want to calculate

NC PoS	Key Concepts Link	Key Competencies	Key Vocabulary
Children should be taught to: Interpret and construct pie charts and line graphs and use these to solve problems Calculate the mean as an average Illustrate and name parts of a circles, including radius, diameter and circumference and know that the diameter is twice the radius	Pathway -8 Statistics Sequence steps: Topics will be broken down into manageable steps that build on a sequence of steps in learning where mathematical concepts are connected in order t e ensure there is a real depth of understanding. Adopling the mastery approach: Embedding understanding and develop rich connections across topics. Calculating both mentally and in wrilten form - revisising topics to consolidale understanding. Interleaved learning Encouraging pupils to successfully commit previous learning into their long term memory. Solve problems and complete reasoning activities of a more complex nature, using knowledge of facts, concepts and procedures. CPA Approach. Subject vocabulary knowledge and use.	L.O: I can interprel data presented in line graphs L.O: I can solve problems involving data presented in different formats L.O: I can recognise and calculate the different parts of a circle (radius and diameter) L.0: I can interpret data presented in a pie chart L.O: I can solve problems involving this data L.O: I can calculate the mean as an average	Pie Chart Mean Mode Median Range Statistics Frequency Distributio n

Key Activities

LAssessment lask - Area, Perimeter \& Volume WRM assessment completed.

Retrieval task - Where might you see a line graph used in real life? Why is the 'Water Consumplion' graph more difficullt to interpret? How can you make sure that you read the in formation accurately? What will the -axis represen!? What intervals will you use? What will the -axis represent? What intervals will you use? How will you make it clear which line represents which set of data? Why is it useful to have both sets of data on one graph?
REFER TO 6ST-I ppt Children will build on their experience of interpreting data in context from Year 5, using their knowledge of scales to read information
accurately. Examples of graphs are given but it would be useful if real data grom across the curriculum e.g. Science, was also used. Chn taught that line graphs represent continuous data not discrete data. They need to read information accuratelely. including where more than one set of data is on the same graph.
REFER T0 6ST-2 ppt Children will build on their experience of reading and interpereing data in order to draw their own line graphs. Although example contexts are given, it would be use ful if children can see real data from across the curriculum. Children will need to decide on the most appropriate scales and intervals to use depending on the data they are representing. EXPAND

REFER TO 6ST-3 ppt Once children can read, interpret and draw lines graphs they need to be able to use line graphs to solve problems. Children need to use their knowledge of scales to read information accuratelely. They need to be exposed to graphs that show more than one set of data. At this point, children should be secure with the terms and axis, frequency and data.
REFER T0 6ST-4 ppt Children will illustrate and name parts of circles, using the words radius, diameter, centre and circum ference con fidently. They will also explore the relationship between the radius and the diameter and recognise the diameter is wwice the length of the radius.
REFER TO 6ST-5 ppt Children will build on their understanding of circles to start interpreting pie charts. They will understand how to calculate fractions of amounts to interpret simple pie charts. Children should understand what the whole of the pie chart represents and use this when solving problems.
REFER TO 6 ST-6 ppt Children will apply their understanding of calculating percentages of amounts to interpet pie charts. Children know that the whole of the pie chart totals 100%. Encourage children to recognise fractions in order to read the pie chart more efficiently
CHALENGE

REFER TO 6ST-7 ppt

Children will apply their addition and division skills to calcullate the mean average in a variely of contexts. They could find the mean by sharing equally or using the formula: Mean $=$ Total \div number of items. Once children understand how to calculate the mean of a simple set of data, allow children lime to investigate missing data when given the mean.

